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Preface

This book consists of two parts: one, a primer designed to provide an adequate

introduction to the essentials of abstract algebra and to some related number

theory, and two, a workbook designed to enable the reader to interactively

engage with colleagues in exploring the fascinating world of abstract algebra.

We have taken a problem solving approach – the primer alone contains over

130 problems. So be prepared for minimal text material to read, combined

with worksheets that extend and enhance text topics. These worksheets are

designed to encourage discovery of interesting relationships between algebraic

structures, geometry, mappings, and proofs.

Very little, if any, background in abstract algebra is needed for a course based

on this Primer and the workbook. This material has been used successfully for

over a decade with in-service secondary teachers seeking licensure or an MA

degree in teaching mathematics.

In this book we embrace the oft-quoted maxim - “You learn mathematics by

doing mathematics.” Such an effort leads to better understanding and deeper

learning.

Finally, a valuable by-product: A significant number of teachers who have

studied this material have incorporated a variety of the worksheets into their

secondary curriculum as they encounter topics like closure, binary operations

and their properties, modular arithmetic, and the structure of the integers (yes,

GCD and LCM show up), and the rational and real numbers.

Richard Grassl

April 2019
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Introduction

An abstract algebra consists of a set of objects (integers, real numbers, per-

mutations, polynomials, matrices, . . . ), various binary operations, along with

some properties (closure, inverses, commutativity,. . . ). Examples of abstract

algebras include groups, rings, integral domains, and fields. Operations in-

clude rotations of regular geometrical figures, ordinary and modular addition

andmultiplication, addition andmultiplication ofmatrices and of polynomials,

composition of permutation cycles, direct products and others.

In one sense the core ideas of algebra are abstracted out and viewed from

a much larger lens. For example, the problem of finding analogues of the

quadratic formula, around the mid 1500’s, led to the study of the symmetric

groups which shed light on the nonsolvability of the general quintic.

Applications are plentiful. Among the many fields of study making signifi-

cant use of algebraic structures we include cryptography, genetics, mineralogy,

the study of molecular structures in chemistry, elementary particle theory in

physics, Latin squares in statistical experiments, and finally, architecture and

art.

Important contributors over the past several centuries include Joseph La-

grange, Niels Abel, Arthur Cayley, EmmyNoether, Gauss, Galois, Sylow among

many others.
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Binary Operations

The concepts of being commutative and associative are usually introduced to

students as they study the four basic arithmetic operations of addition, subtrac-

tion, multiplication and division of integers. These four operations denoted by

+, −×, ÷ are examples of binary operations.

Let S be any set. A binary operation on S is a function f : S × S→ S. Some-

times a binary operation is depicted using the infix notation (m , n) 7→ m � n,

rather than the prefix notation f (m , n). The following are examples of binary

operations on N � {0, 1, 2, 3, . . . }.

OPERATION INFIX NOTATION

f (m , n) � m + n m � n � m + n

f (m , n) � mn m � n � mn

f (m , n) � gcd(m , n) m � n � gcd(m , n)

f (m , n) � 5m · n m � n � 5m · n

Additional binary operations that will be of importance include

f (x , y) � x ÷ y on S � R where y , 0

f (m , n) � m − n on S � Z � {0,±1,±2, . . . }

f (m , n) � m + n − mn on S � Z

f (m , n) � m + n − 1 on S � Z

f (A, B) � A ∪ B on P(S) for S � {a,b,c}

f (A, B) � A ∩ B on P(S) for S � {a,b,c}

2



Binary Operations 3

Here, ∪ denotes union and ∩ denotes intersection. Also, P(S), the power set for

S, is the set of all subsets of S. As an example, if S={a,b},then P(S) = { ∅, {a}, {b},

{a,b} }.

Properties of Binary Operations

Binary operations on a set X may ormay not satisfy the following properties:

Commutativity: x � y � y � x for all x , y in X.

Associativity: x � (y � z) � (x � y)� z for all x , y , z in X.

Identity: An element e ∈ X such that x � e � e � x � x for x in X is called an

identity for the binary operation �.

Inverses: If e is an identity under�, an inverse of an element a in X is an element

b in X such that a � b � e � b � a.

For example, the operation + onZ is associative since a + (b + c) � (a + b)+ c

for all a , b , c inZ. Since a + b � b + a, + is commutative. The element 0 serves as

an identity e since 0+ a � a + 0 � a. Each element a ∈ Z has an inverse, namely

−a.

One important characterizationor consequenceof thenotation f : A×A→ A

is that the result f (m , n), or m � n, must be an element in A; i.e., A must be

closed under the binary operation �. So divisibility, denoted ÷, is not a binary

operation on N � {0, 1, 2, . . . } since m÷ n �
m
n is not necessarily an integer. But

÷ is a binary operation on the setR+ of positive real numbers. Notice that since

2 ÷ 3 , 3 ÷ 2, ÷ is not commutative.
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Example 1

Consider the binary operation m � n � 3m · n on N � {0, 1, 2, . . . }; show

that � is not associative. The following single example accomplishes this:

1� (0� 1) � 1� 1 � 3 but (1� 0)� 1 � 0� 1 � 1

Does � have an identity? it might be natural to try 0 or 1. Since 0� n � n

but n � 0 � 0, 0 is not an identity. Since 1� n � 3n, 1 is not an identity. No

other element in n works either; without an identity, there are no inverses.

Example 2

Union,∪ , is a binary operation onP(S)where S={a,b,c}. SinceA∪(B∪C) �

(A ∪ B) ∪ C, ∪ is associative. Since ∅ ∪A � A � A ∪ ∅ for all A ∈ P(S), the

empty set ∅ serves as an identity.

When the set A is finite, a binary operation � can be given by a matrix table

where the element x � y is found at the intersection of row x and column y.
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Example 3

Let A � {1, 3, 7, 9} and let x � y be the digit in the units position upon

ordinary multiplication of x and y. This is sometimes written as x � y ≡

x y(mod 10). The matrix table is

� 1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

This binary operation � : A × A → A is associative (you need to check

4 · 4 · 4 � 64 cases), is commutative (from the symmetry of the table), has

identity 1, and each element has an inverse as shown in the following

table:
x 1 3 7 9

inverse of x 1 7 3 9

Example 4

The binary operation ◦ on A={e, a, b} given by the table below is associa-

tive, commutative and has e as an identity. In the exercises you are asked

to find inverses.
◦ e a b

e e a b

a a b e

b b e a
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Example 5

Let A � {1, 2, 5, 10} and m � n � gcd(m , n), the greatest common di-

visor of m and n. The matrix table for � is given. With some

effort, you can show that � is associative.The table’s symmetry ver-

ifies that the operation � is commutative. In the exercises, you

are asked to determine an identity and to see if there are inverses.

� 1 2 5 10

1 1 1 1 1

2 1 2 1 2

5 1 1 5 5

10 1 2 5 10

Example 6

Ordinary multiplication with rounding to the nearest tenth after each

multiplication is not associative. Try this one: (1.1)(0.3)(2.7).

Example 7

Define a binary operation ◦ onZ by m◦n � m+n−3. Tofind the identity e,

e needs to satisfy m◦e � e◦m � m. Since ◦ is clearly commutativewe need

notworry about checking e◦m � m. Then, m◦e � m+e−3 � m and e � 3.

As an example, 7 ◦ 3 � 7 + 3− 3 � 7. What about inverses? The inverse of

an integer p in Zmust satisfy 3 � p ◦ p−1 � p + p−1 − 3 and so p−1 � 6− p.

As an example, the inverse of 13 is −7 since 13 ◦ (−7) � 13 + (−7) − 3 � 3,

the identity.
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“An” Identity versus “The” Identity

Throughout this discussion of properties we have been saying “an” identity.

Here is some good news! We can replace “an” with “the” whenever an identity

exists.

Theorem 1

If the binary operation � on X has an identity, then it is unique.

Proof: Proceed using a proof by contradiction. Suppose there are two

different identities; call them e and f . Since x � e � x � e � x for all x in X,

it must hold for x � f , i.e., f � e � f � e � f . Since x � f � x � f � x for

all x in X, it must hold for x � e, i.e., e � f � e � f � e. But then e � f � f

and e � f � e, or e � f contradicting the fact that they were different.

Similarly, inverses are unique. Let e be the identity for an associative

operation ◦ on X, and let g and h be two inverses for some a in X. Then

g � g ◦ e � g ◦ (a ◦ h) � (g ◦ a) ◦ h � e ◦ h � h. You should give reasons for

each step.

Meet and Join

There are two binary operations on B={0,1} that are basic in computer design

and operation. The meet
∧

and join
∨
operations are given by the tables below.

∧
0 1

0 0 0

1 0 1

∨
0 1

0 0 1

1 1 1

The meet operation is similar to intersection ∩ and join is similar to union ∪,
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and behave like the logical connectives “and” and “or” respectively. Each of
∧

and
∨

are commutative and associative. Are there identities, inverses?

Bitwise Addition Modulo 2

Another binary operation having applications in coding theory is based on

the table below.
⊕ 0 1

0 0 1

1 1 0

Here, a ⊕ b is 0 if a + b is even and a ⊕ b � 1 if a + b is odd. Equivalently,

a ⊕ b � 0 if a � b, and a ⊕ b � 1 if a , b. The binary operation ⊕ on B � {0, 1}

is called “bitwise addition modulo 2”. On B2 � {00, 01, 10, 11}, the table for ⊕

is given.

The operation is performed bitwise; 10 ⊕ 01 � 11

since 1 ⊕ 0 � 1 and 0 ⊕ 1 � 1. You are asked to

investigate properties of ⊕ in the exercises.

⊕ 00 01 10 11

00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00

PROBLEMS - BINARY OPERATIONS

1. (a) Is subtraction a commutative binary operation on Z? Explain.

(b) Is subtraction associative on Z?

(c) Is multiplication commutative on Z?

(d) Does multiplication have an identity on Z? Are there inverses?

2. Give an example of subsets A and B of Z so that
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(a) subtraction is not a binary operation on A.

(b) multiplication is not a binary operation on B.

3. Let S={a,b,c}, and P(S) be the power set of S.

(a) Is ∪ on P(S) commutative Explain.

(b) Does {a} have an inverse?

4. Let S={a,b,c,d}.

(a) Is ∩ on P(S) commutative, associative? Explain.

(b) Does ∩ have an identity?

(c) What is the inverse of A={b,d} under ∩?

5. Let ◦be the binary operation onN � {0, 1, 2, . . . }with m ◦ n � (5m)(2n+1).

(a) Compute 2 ◦ 3 and 3 ◦ 2. Is ◦ commutative?

(b) Is ◦ associative? Does ◦ have an identity? Is it 2-sided?

6. Let ◦ be the binary operation m ◦ n � m+n−mn onZ. Is ◦ commutative,

associative? Does ◦ have an identity?

7. Make a table of inverses for the operation in example 4.

8. Let A � {1,−1, i ,−i} and let � denote ordinary complex multiplication.

(a) Make the matrix table for �. (b) Is � associative, commutative?

(c) Does � have an identity?

(d) Give a table of inverses for the elements of A.

9. What is the identity for the binary operation in example 5? Are there

inverses?
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10. Let A � {1, 2, 5, 10} and define a binary operation on A by m � n �

LCM(m , n). Make the matrix table for � and decide whether � is commu-

tative, has an identity, inverses.

11. Let A � Z � {0,±1,±2,±3, . . . } and define a binary operation on Z by

m � n � m + n − 1.

(a) Is � commutative? (b) Does � have an identity?

(c) Are there inverses?

12. Define the operation � on Z+ as follows: m � n � gcd(m , n) + lcm(m , n).

Is � associative?

13. (a) Is m � n � 3m · n commutative on N � {0, 1, 2, 3, . . . }?

(b) How many ordered pairs (m , n) can you find so that m � n � 18?

14. Which properties are satisfied by ⊕, bitwise addition modulo 2?

15. Show that m � n � n 2m is not associative on N � {0, 1, 2, . . . }. Is �

commutative?

16. Let S be the set of all real numbers except −1 and define a�b � a + b + ab

on S. What is the identity? What is the inverse of an element p in S?

17. Let a�b � ab with a , b ∈ {1, 2, 3, . . . }.

(a) Is � commutative? (b) Is � associative?

(c) What is the meaning of abc?
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Activity 1 - AN OPERATION TABLE

Here is the operation table for a binary operation �. Is � associative? Is �

commutative?

� a b c d e

a a b c d e

b b c a e c

c c a b b a

d b e b e d

e d b a d e



Closure

We say that a binary operation � on a set S is CLOSED if whenever a and b are

any two elements in S then a � b is also in S. For example, the operation + is

closed on the set S � Z � {0,±1,±2, . . . } since a + b is in Z for a , b ∈ Z. But

subtraction is not closed on the set N � {0, 1, 2, 3, . . . } since 1 − 3 � −2 is not in

N.

The following gives the two part procedure for determining if a particular

set S is closed under a particular binary operation �:

1. Choose two arbitrary elements for S; label them a , b.

2. Show that a � b is a number of S.

Example 1

The set E � {0, 2, 4, 6, . . . } is closed under addition. Let a � 2m and

b � 2n be arbitary elements of E. Then since 2m + 2n � 2(m + n) is

an even integer the sum of 2m and 2n is in E. E is also closed under

multiplication since (2m)(2n) � 4mn � 2(2mn) is even.

Example 2

The set of all rational numbers of the form 3n , n ∈ Z, is closed under

multiplication since 3a · 3b � 3a+b .

PROBLEMS - CLOSURE.

In each of the following if the set is closed under the operation give reasons

(actually a proof); if not, provide a counterexample.

1. Is A � {0, 1, 4, 9, 16, . . . } closed

12
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a. under addition? b. under subtraction? c. under multiplica-

tion?

2. Is B � {0,±5,±10,±15, . . . } closed

a. under addition? b. under multiplication?

3. Is C � {0, 2, 4, 6}, a finite set, closed under addition?

4. Is D � {1, 3, 5, 7, . . . } closed

a. under addition? b. under multiplication?

5. Is E � {1, 4, 7, 10, 13, . . . }, the positive integers having remainder 1 upon

division by 3 closed

a. under addition? b. under multiplication?

6. Repeat #5 with F � {2, 5, 8, 11, 14, . . . }.

7. The set G � {0,±4,±8,±12, . . . } is closed under subtraction. Give another

set H that is closed under subtraction. Show that G∩H is also closed under

subtraction.

8. Is the set of all rational numbers of the form 2n , where n is in Z, closed

under multiplication?

9. Is the set of all positive rational numbers closed under addition? Under

multiplication?

10. Let I � {2m · 3n : m , n are in Z}. Is I closed under multiplication?

Hint: Is 3/8 in I? Is 1/9 in I?

11. Are the irrationals closed under multiplication?
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12. Prove that if S and T are sets of integers closed under subtraction so is the

intersection S ∩ T. Is the union of S and T also closed under subtraction?

13. Why does 0 always have to be a member of any set that is closed under

subtraction?

14. Let R denote a 120◦ rotation of an equilateral triangle. Is the set {I , R, R2}

closed under “rotation”? Here, I means do nothing and R2 means a 240◦

rotation.

15. (a) Express each of 5 and 13 as a sum of two squares. Express 65 as a sum

of two squares.

(b) Is the set A � {m2 + n2 : m , n ∈ Z} closed under ordinary multiplica-

tion?

Units Multiplication

Under unitsmultiplication the product of any two positive integers, denoted

by a � b, is the units digit of the product under ordinary multiplication. So

5� 9 � 5, 7� 8 � 6.

16. Is the set {0, 2, 4, 6, 8} closed under units multiplication?

17. Is the set {1, 3, 7, 9} closed under units multiplication?

18. Is {1, 4, 6} closed under units multiplication? How about the set {2, 4, 8}?

How about {1, 5, 9}?

19. What would you have to add to the set {1, 3, 5} to make it closed under

units multiplication?
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Closing Comments: As you can see from the problems, the concept of clo-

sure is important. Analyzing for closure promotes a deeper understanding of

the use of counterexamples. It also facilitates moving from specific examples to

general results.

Activity 2 - THE PENNYMOVE

Suppose you allowapenny tomove

in just the following four ways on this

square.

1. I the penny stays stationary.

2. H the penny can move horizon-

tally left or right.

3. V the penny can move vertically,

up or down.

4. D the penny can move diago-

nally.

1 2

34

TASK 1 - Starting in box 3, where does the penny land after H? After V?

TASK 2 - Starting in box 1, where does the penny land after D is followed by

V?

TASK 3 - Where is the penny? Start in box 2 and then do the following (left

to right) DDVHIDH.
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TASK 4 - Repeat with the sequence HDDHDVIHV, but start in box 3.

TASK 5 - Fill in the operation table giving the result of a move followed by

another move. The binary operation ◦ is “followed by".

(a) Does it matter where you start?

(b) Is V followed by H the same as H followed by V?

◦ I H D V

I

H D

D

V
The D that is shown indicates that an H followed by a V gives a D. Always

operate from the left-most column to the top row.

(c) Is the “Penny move" operation closed?

(d) What observations can you make about your chart?



Groups

A GROUP is an algebraic structure that consists of two items: a set of elements

G, and a binary operation ◦. This structure satisfies FOUR axioms:

CLOSURE: For any elements a and b in G, a ◦ b is also in G.

IDENTITY: There is a unique element e in G such that for any a ∈ G we have

a ◦ e � a � e ◦ a.

INVERSES: For every element a in G there is an element a−1 in G so that

a ◦ a−1 � e � a−1 ◦ a

ASSOCIATIVITY: For any three elements a , b , c in G we have (a ◦ b) ◦ c �

a ◦ (b ◦ c).

A general group can be denoted as (G, ◦) indicating the importance of having

both a carrier set G and a binary operation ◦. When the operation is clear from

a particular context we may write just G for that group.

Example 1

(Z,+) is a group under the usual addition operation. Choose a , b in Z.

Since a + b is an integer CLOSURE holds. The IDENTITY e is 0 since

0 + a � a � a + 0 for any a ∈ G. The INVERSE of a is −a (we could write

a−1 � −a) since a + (−a) � 0 � (−a) + a. ASSOCIATIVITY holds since

(a + b) + c � a + (b + c).

17



18

Example 2

In the exercises youwill show that the following are groups: (Q,+), (R,+),

(Q+,×), (R+,×) where Q=Rationals, R=Reals, Q+= Positive Rationals,

R+=Positive Reals.

Example 3

In the exercises you will show that the following are not groups:

(Z,−), (Z,÷). What do you think goes wrong with the binary opera-

tion ÷?

Abelian Groups

Some groups have an additional fifth property called commutativity. A

binary operation ◦ on a set G is commutative if a ◦ b � b ◦ a for all a , b in G.

We also say that the group (G, ◦) is an ABELIAN GROUP, named after Niels

Abel, a major contributor in the development of group theory. He also proved

the insolvability of the fifth-degree polynomial equation, one of his greatest

achievements.

Caution: The words commutative and abelian are almost synonymous. In

doing proofs, one can never say “G is abelian since it is commutative". Often

commutative describes a binary operation while abelian describes a group.

The examples involving Z, Q, and R above are all abelian groups.
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Group Tables

When the set G is finite (most of the above examples were infinite) the

four group properties and be readily detected from an operation table. We

saw earlier that the set G � {1, 3, 7, 9} was closed under units multiplication

denoted ⊗. The operation table follows.

⊗ 1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

The symbol ⊗ means take a from the left most column and “multiply” by b

from the very top row. The 16 interior elements are just 1, 3, 7 and 9 showing

closure. The element 1 acts like the identity – look at the top interior row and

the left most interior column. Inverses are easy to find; just look for the 1’s in

the table. Since 1 ⊗ 1 � 1, 3 ⊗ 7 � 1 and 9 ⊗ 9 � 1 we have the following table

of inverses.
x 1 3 7 9

x−1 1 7 3 9

Associativity is inherited from multiplication in Z; we now know that (G, ⊗) is

a group. In fact, the symmetry of the table shows that G is an abelian group.
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Example 4

Here is an example of a group that involves functions and algebra. The

operation is composition of functions. Let f (x) � x, g(x) � 1
1−x and

h(x) � x−1
x . G � { f , g , h} is a group with identity function f . The

“product” gh is g(h(x)) � g( x−1
x ) � 1

1−( x−1
x )

�
x

x−(x−1) � x. Conclusion:

gh � f . You should form the other products and make the group table.

Consequences of the 4 Group Axioms

Theorem 1

If ab � ac in a group G then b � c. (This is called left cancellation).

Proof: Multiply each side of ab � ac on the left by a−1. You get

(a−1a)b � (a−1a)c or b � c. A similar result holds for right cancella-

tion. But be careful “mixed” cancellation may not work, i.e. ab � ca does

not necessarily imply b � c.

Theorem 2

In the multiplication table for a finite group G � {g1, g2, . . . gn} each

element of G appears exactly once in each row.

Proof: The entries on row r are r g1, r g2, r g3, . . . , r gn . If two of these are

the same, say r gi � r g j then gi � g j upon left multiplication by r−1. But

this is a contradiction. Why? It can also be shown that elements in any

column are distinct.

Theorem 3

For any a ∈ G, (a−1)−1 � a.
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Proof: a a−1 � e. This is like saying that the inverse of 2 in (Q ,×) is

2−1 �
1
2 since 2 · 1

2 � 1, the identity.

Theorem 4: Sock-Shoe Theorem

(ab)−1 � b−1a−1.

Proof: (ab)(b−1a−1) � a(bb−1)a−1 � aea−1 � e.

Theorem 5

If a � a−1 for all a ∈ G, then G is abelian.

Proof: ab � a−1b−1 � (ba)−1 � ba. This result is equivalent to saying

that if the operation table has e, the identity, down themain diagonal then

G is abelian. The reason; a � a−1 implies a2 � e.

Theorem 6

Let a and b be in a group G. Show that (ab)−1 � a−1b−1 if and only if

ab � ba.

Proof: First we show that if (ab)−1 � a−1b−1, then ab � ba. We have

ab � ((ab)−1)−1 � (a−1b−1)−1 � (b−1)−1(a−1)−1 � ba. Conversely, if ab � ba,

then (ab)−1 � (ba)−1 � a−1b−1

Theorem 7

Prove that (ab)2 � a2b2 in a group G if and only if G is abelian.

The proof of Theorem 7 is left as a problem.
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A Group Generator

Sometimes there is an element in a group G whose powers (sums) generate

the entire group. In G � {1, 3, 7, 9} under units multiplication, 3 is such an ele-

ment since 30 � 1, 31 � 3, 32 � 9, 33 � 7. We can write [3] � {1, 3, 7, 9} to show

that 3 is a generator. It is also true that [7] � [3], but [9] , {1, 3, 7, 9}. A group

that has a generator is called cyclic. Hence {1,3,7,9} is a cyclic group. {1,−1, i ,−i}

is also a cyclic group under complex multiplication, generated by either i or −i.

(Z,+) is an additive cyclic group generated by 1 or −1. For an additive group,

powers are replaced by sums: 2 � 1 + 1, 3 � 1 + 1 + 1, 4 � 1 + 1 + 1 + 1, . . . and

so on. In summary, for a group whose operation is multiplication am means

a · a · a · · · · · a; if the operation is addition, m · a means a + a + a + · · · + a.

Here is a chart showing a comparison between the two notations:

Multiplicative notation

a−1

a � (a−1)−1

(ab)−1 � b−1a−1

am · an � am+n

an � e

[a] � {am : m ∈ Z}

Additive notation

−a

a � −(−a)

−(a + b) � (−a) + (−b)

ma + na � (m + n)a

na � 0

[a] � {m · a : m ∈ Z}

Subgroups

Let (G, ◦) be a group and let H be a subset of the set G. (H, ◦) is a subgroup

of (G, ◦) if (H, ◦) is closed under ◦, has the e of G as the identity and contains

inverses. Associativity is inherited from (G, ◦). Examples are easy to find.
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(Z,+) is a subgroup of (Q ,+). {1,9} is a subgroup of {1,3,7,9} under mod 10

multiplication. The set {1,−1} is a subgroup of {1,−1, i ,−i} which itself is a

subgroup of all complex numbers under multiplication. The set of all integral

multiples of 3, H � {0,±3,±6, . . . }, is a subgroup of (Z,+). Can you give a

subset S of (Z,+) such that S is closed under addition but is not a subgroup?

Modular Groups

Clock arithmetic provides a fruitful source of nice finite groups. Recalling

that 13 o’clock is really just 1 o’clock upon subtraction of 12, we can make a

clock with just the four numbers 0,1,2,3 the remainders when any integer n is

divided by 4. We can write 7 ≡ 3(mod 4) for example. This is read as 7 is

congruent to 3 modulo 4. In general a ≡ b(mod m)means that a and b have the

same remainder when divided by m; or that a − b is divisible by m.

Definition. Let Zn � {0, 1, 2, 3, . . . , n − 1}. The sum a + b of any two elements

in Zn is just the remainder when a + b is divided by n.

With this definition of sum we can see that (Zn ,+) is a group. Lets form the

operation table for Z4 � {0, 1, 2, 3}.

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

The table shows closure, and that 0 is the identity. Locate the 0’s in the table

to see that the inverse of 0 is 0, the inverse of 1 is 3 (since 1+3=0), the inverse



24

of 2 is 2, and the inverse of 3 is 1. This new sum rule is an associative binary

operation on Z4 since ordinary addition is associative on Z, the usual integers.

In similar analysis, (Zn ,+) is an additive group.

Example 5

Z6 � {0, 1, 2, 3, 4, 5} is a group with a number of subgroups.

A � {0}, B � {0, 3}, C � {0, 2, 4}, and D � {0, 1, 2, 3, 4, 5}

are all subgroups of Z6. The following picture, called a lat-

tice of subgroups, shows the relationships between the subgroups.
D

B

A

C

Theupward sloping lines indicate subgroup inclusion: A ⊆ B,A ⊆ C, B ⊆

D , C ⊆ D and A ⊆ B ⊆ D ,A ⊆ C ⊆ D, two chains of length two.
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Example 6

The modular groups Zn are cyclic where 1 is always a generator for the

additive groups Zn .

For Z4, 1 is a generator since

1 · 1 � 1 � 1

2 · 1 � 1 + 1 � 2

3 · 1 � 1 + 1 + 1 � 3

4 · 1 � 1 + 1 + 1 + 1 � 4

In additive notation 3 · 1 means add three 1’s together. InZ6, only 1 and 5

are generators. For example, 3 is not a generator since you can only make

0 and 3 using multiples m ·3 of 3. Try it! Likewise, the element 2 will only

generate 0, 2, 4.

The previous example prompts the question: which elements in Zn are

generators? The following chartmight provide a clue as youpursue the question

in the exercises.
n Zn generators

2 {0, 1} 1

3 {0, 1, 2} 1, 2

4 {0, 1, 2, 3} 1, 3

5 {0, 1, 2, 3, 4} 1, 2, 3, 4

6 {0, 1, 2, 3, 4, 5} 1, 5
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PROBLEMS - GROUPS

1. Show that each of the following are groups.

(a) (Q ,+) (b) (R,+) (c) (Q+,×) (d) (R+,×)

2. Show that the following are not groups

(a) (Z,−) (b) (Z,÷) (c) (Z,×)

3. Make the multiplication table for A � {4, 8, 12, 16} under multiplication

mod 20. Does A have an identity?

4. Is B � {2, 4, 6, 8} under units multiplication a group? Is B cyclic? Is B

abelian?

5. Verify that 7 is a generator of the group {1,3,7,9} under unitsmultiplication,

but that 9 is not a generator.

6. Let S � {e , a , b , c}. Make the 4×4 group operation table assuming that e

is the identity and that a2 � b2 � c2 � e. Is S cyclic? Abelian?

7. Show that G � {1,−1, i ,−i} is a group under ordinary complex multipli-

cation. Is G cyclic?

8. Show that G � {00, 01, 10, 11} is a group using bitwise addition mod 2. Is

G cyclic?

9. Give an example of a group that illustrates Theorem 6.

10. Prove that in a group (abc)−1 � c−1b−1a−1. Why is this called the sock-shoe

theorem?

11. Make the group table for G � {000, 001, 010, 011, 100, 101, 110, 111} using

bitwise addition mod 2. Is G abelian? Is G cyclic?
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12. Is {1,3} a subgroup of {1,3,7,9} under mod 10 multiplication?

13. Verify that H � {0,±7,±14, . . . } is a subgroup of Z under addition.

14. Is the set of all complex numbers αwith |α | ≤ 1 a subgroup of all nonzero

complex numbers undermultiplication? Here, if α � a+bi, |α | �
√

a2 + b2,

its distance from the origin.

15. Make the operation table for Z6 and find all subgroups.

16. Make the operation table for Z8 and find all subgroups.

17. Without making the addition table for Z12 can you give all the closed

subsets ofZ12? Are these in fact subgroups? Draw the lattice of subgroups

of Z12.

18. Show that in (Zn ,+), the additive groups of integers modulo n, that the

inverse of any a , 0 is n − a.

19. Explain why (Z4, •) is not a group where multiplication is modulo 4.

20. Verify associativity for the following sum in Z7:

(3+5)+6 and 3+(5+6)

21. Find all the generators for the cyclic group Z5 and verify that each in fact

generates all of Z5.

22. Determine those elements in Zn that are generators.

23. Solve the quadratic equation x(x + 1) � 0

(a) in Z4 (b) in Z5 (c) in Z6
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24. Make the group multiplication table for G � {e , a , a2, a3, a4} where e is

the identity and a5 � e. Hint: a3 · a4 � a7 � a5 · a2 � a2.

25. Let G be a group. Prove that for any a ∈ G,H � {x ∈ G : x � an for n ∈ Z}

is a subgroup of G (generated by a).

26. Prove Theorem 7.

27. Let {M2(R)} be the set of all 2 × 2 matrices with real entries. Show that

this set is a group under matrix addition.

28. Let G � {IM2(R)} consist of all invertible 2 × 2 matrices. Prove that G is a

multiplicative group.

29. Let G � {ax + b : a , b ∈ Z2}. Prove that G is a group under addition

mod 2.

30. Let G � {ax2 + bx + c : a , b , c ∈ Z3}. Prove that G is an additive group of

order 27.

31. Let a and b be elements of an abelian group, and let n be a positive integer.

Prove by mathematical induction that (ab)n � anbn .

32. A certain multiplicative group G, mod 91, has order 9. Which element is

missing from the following listing: 1, 9, 16, 29, 53, 74, 79, 81 of elements of

G?
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Activity 3 - A CAYLEY TABLE

Complete the following Cayley Group Table

e a b c d

e e a b c d

a a b c d e

b b

c c

d d

1. What is the order of each element?

2. Give the inverse of each element.
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Activity 4 - A PARTIAL GROUP TABLE

Complete this operation table.

e a b c d f

e e a b c d f

a a b e d

b b

c c f a

d d

f f



More on Cyclic Groups

Recall that if a group G is made up entirely of powers of a particular element,

call it a, then G is called a cyclic group denoted by G � [a]. The element a is

called a generator, and the least positive integer s such that as � e, the identity

in G, is called the order of a. G can be finite or infinite.

Example 1

The additive group Z is cyclic. Either 1 or −1 will generate all

of Z. Since Z is additive, [−1] � {m · (−1) : m ∈ Z}; so [−1]

consists of all distinct elements among the “additive powers" . . . ,

−3(−1),−2(−1),−1(−1), 0,−1,−2,−3 . . . .

Example 2

5Z � [5] � {0,±5,±10 . . . } is a cyclic subgroup of Z generated by 5 (or

−5). The generator 5 has infinite order.

Example 3

The order of i in [i] � {1,−1, i ,−i} is 4, while −1 has order 2.

Example 4

Zn � {0, 1, 2, . . . , n − 1} is cyclic for all positive n.

Z12 has 1, 5, 7, and 11 as generators. Lets check 5:

0 · 5 � 0 6 · 5 � 6

1 · 5 � 5 7 · 5 � 11

2 · 5 � 10 8 · 5 � 4

3 · 5 � 3 9 · 5 � 9

31
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4 · 5 � 8 10 · 5 � 2

5 · 5 � 1 11 · 5 � 7

You might want to check that 7 also generates Z12. We can write Z12 �

[1] � [5] � [7] � [11]. Finally, since the gcd(3, 12) � 3, the element 3

generates a subgroup of 12
3 � 4 elements; [3] � {0, 3, 6, 9}

Example 5

Let G � [a] be a cyclic group of order 12. Then with a12 � e ,

[a] � {e , a , a2, a3, . . . , a11}. The generator a has order 12; the element a7 is

also a generator. The order of a3 is 4 since 4 is the least power s such that

(a3)s � e.

Example 6

Let G � [a] be a cyclic group of order 30. The order of a9 is 10 and

[a9] � {e , a9, a18, a27, a6, a15, a24, a3, a12, a21}.The elements are listed in the

order that they are made.

The following are two useful results:

Result 1. Let a ∈ Zn . [a] � Zn if and only if a and n are relatively prime, i.e.

gcd(a , n) � 1.

Result 2. Let G � [a] have order n. Then G � [am] if and only if gcd(m , n) � 1.

Multiplicative Group of Invertibles

Let Vn denote the subset of the additive group Zn � {0, 1, 2, . . . , n − 1} of

subsets that have multiplicative inverses. Alternatively, we could define Vn as

the set of all positive integers less than n that are relatively prime to n. Vn is a
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group under multiplication modulo n. Showing inverses is the only interesting

aspect. If gcd(m , n) � 1 � am + bn, for some integers a and b, then m has an

inverse a since bn ≡ o(n), leaving am ≡ 1(n).

Example 7

V8 � {1, 3, 5, 7}. The multiplicative identity is 1 and each of 3, 5, 7 is its

own inverse. V8 is not cyclic.

Example 8

Each of V5,V6,V7 is cyclic but V16 is not. The orders of the elements in

V16 � {1, 3, 5, 7, 9, 11, 13, 15} are 1, 4, 4, 2, 2, 4, 4, 2, respectively. Lacking

an element of order 8, V16 cannot be cyclic.

PROBLEMS - MORE ON CYCLIC GROUPS

1. Is V9 cyclic?

2. Is V15 cyclic ?

3. Let [a] � {e , a , a2, . . . , a23} be a cyclic group of order 24. List the elements

of a subgroup or order 3. What is the order of a5 in [a]?

4. In Example 5, which elements of [a] are generators? Why?

5. Is G � {1, 3, 7, 9} under units multiplication cyclic?

6. Prove that every cyclic group is abelian.

7. What is the order of the cyclic subgroup of Z30 generated by 25?
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8. What is the order of the cyclic subgroup [i] of the nonzero complex num-

bers under multiplication?

9. Find the number of generators of a cyclic group with order:

(a) 7 (b) 9 (c) 15 (d) 60

10. Let G � [a] be a cyclic group of order 18.

(a) List all the elements of order 3 in G.

(b) List all the elements of order 4 in G.

11. Let V be the multiplicative group of the nonzero complex numbers, and

let ω � (−1 + i
√

3)/2.

(a) Show that ω � cos 120◦ + i sin 120◦.

(b) Show that ω3 � 1. What is the order of ω?

(c) What is the order of cos(5π/11) + i sin(5π/11) in V?

(d) What is the order of (1 + i)/
√

2 in V?

(e) What is the order of 1 + i in V?

12. Let G � [a] be a cyclic group of order m, generated by a. Can you

determine a formula for the order of the element ar , an element of G?

13. Let G � {IM3(R)}, the group of 3× 3 invertible matrices with real entries.

What is the order of the cyclic subgroup generated by

(a)

©­­­­­«
0 0 1

1 0 0

0 1 0

ª®®®®®¬
(b)

©­­­­­«
0 1 0

1 0 0

0 0 1

ª®®®®®¬
?
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Wilson’s Theorem

The multiplicative group Vn provides us with a structure that yields a

proof of an interesting number theoretic result - WILSON’S THEOREM. John

Wilson(1741-1793) is usually credited with the theorem, although many feel

that some credit belongs to Lagrange.

Theorem 1: Wilson’s Theorem

Let p , 2 be a positive prime. Then (p − 1)! ≡ −1(mod p). Here is an

alternate statement: the product of all the nonzero elements in Zp is −1.

Or: The product of all the elements in Vp � {1, 2, 3, . . . , p − 1} is −1.

Proof: In Vp the product 2 · 3· . . . ·p − 2 is congruent to 1 mod p. Vp has

an even number of elements x such that x , x−1. Now use p − 1 ≡ −1(p).

Example 1

Let p � 11; V11 � {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Nearly all of these elements

pair upwith their inverses: 2 ·6 ≡ 3 ·4 ≡ 5 ·9 ≡ 7 ·8 ≡ 1, leaving 1 ·10 ≡ −1.

Example 2

Let p � 13; V13 � {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Here, the product

2 · 3 · 4· . . . ·11 of 10 numbers is congruent to 1, due to the pairing of each

x with x−1. This leaves 12 ≡ −1(13).
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PROBLEMS - WILSON’S THEOREM

1. In V13, pair up the elements and illustrate Wilson’s Theorem.

2. Pair up the elements in V17 and verify 16! ≡ −1(17).

3. Show that (p − 2)! ≡ 1(p).

4. What is the remainder when 100! is divided by 101?

5. What is the remainder when 99! is divided by 101?

6. How many solutions to x2 � 1 are there in Zp?

7. Explain why (29!)2 ≡ 1(59) and (30!)2 ≡ −1(61).
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Activity 5 - WHEN IS Vn CYCLIC?

For which n ∈ {1, 2, 3, . . . , 20} is Vn cyclic? You might try half of these by

hand, and the rest by programming. Can you form any conjectures? If you are

ambitious, try extending to n � 30 or more.

Activity 6 - IS (Q+,×) CYCLIC?

Is the multiplicative group (Q+,×) of positive rationals under multiplication

cyclic?

Activity 7 - A FUN GROUP

The rowsandcolumnsof themultiplication table of agroupG � {a , b , c , d , e , f , g}

are headed by the elements in this order. The first five entries in the second row

are b , d , f , c , a. Complete the multiplication table.

a b c d e f g

a a b c d e f g

b b d f c a

c c

d d

e e

f f

g g



Lagrange’s Theorem

Theorem 1

Let G be a finite group. The order of any subgroup H divides the order

of G.

This will be seen by partitioning the elements of G into non overlapping sets

called cosets, as illustrated in the following.

Definition. Choose an element a in G. A (left) coset of H is the set aH consisting

of all products ah with h ∈ H. The set Ha is a right coset.

LetH � {1, 14} bea subgroupof thegroupof invertiblesV15 � {1, 2, 4, 7, 8, 11, 13, 14}.

In this example, 1H � {1, 14}, 2H � {2, 13}, 4H � {4, 11}, 7H � {7, 8}.

The order of H � 2 � orderG/# of cosets. The number of cosets is called the

index of H in G.

In general, H � {h1, h2, . . . , hr}, aH � {ah1, ah2, . . . , ahr}. Cosets have two

important properties:

1. The elements of aH are distinct. If ahi � ah j , left cancellationwill produce

a contradiction.

2. Distinct left cosets are disjoint – not too hard to prove. Just assume some

element is in both aH and bH and see what happens.

Now let order G � s and order H � r. Start making all (left) cosets until you

38
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exhaust all elements of G.

aH � {ah1, ah2, ah3, . . . , ahr}

bH � {bh1, bh2, bh3, . . . , bhr}
...

Here we take a new b ∈ G (but b < aH), and continue this process until all

elements in G have been accounted for. There can only be a finite number

of these cosets, say t. Then rt � s. This completes the proof of Lagrange’s

Theorem, since r divides s.

Here is an example of an additive group where o(G)=12, o(H)=4 and the

index t � 3. Let G � Z12 � {0, 1, 2, . . . , 11} and H � {0, 3, 6, 9}. The three cosets

are

0 + H � {0, 3, 6, 9}

1 + H � {1, 4, 7, 10}

2 + H � {2, 5, 8, 11}

Verify properties 1 and 2 above, and that every element Z12 is in precisely one

coset.

As a corollary to Lagrange’s Theorem, we have that the order of every ele-

ment in a finite group must divide o(G).

As a final comment, Lagrange’s Theorem tells us that there are really only

two “different" groups of order 4, for example. If o(G) � 4, then either G is

cyclic or not. If G is cyclic, G � [a] where a has order 4. If G is not cyclic then

all elements (except e) must have order 2 by Lagrange’s Theorem. This latter
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group is called a Klein 4-group (The penny group is a Klein 4-group).

PROBLEMS - LAGRANGE’S THEOREM

1. Find all the (left) cosets of H � {0, 6} in Z12.

2. Find all the cosets of H � {0, 4, 8} in Z12.

3. Find all cosets of H � {1, 8} in V9. Does V9 have any other subgroups?

4. Find all cosets of H � {1, 4} in V15. Repeat with H � {1, 4, 11, 14}.

5. Prove that every group having prime order must be cyclic.

6. Show that a cyclic group of order 22 has one element of order 2 and ten

elements of order 11.

7. Let G be a group of order 45. What are the possible subgroup orders?

8. Prove that a group G of order 49 must have a subgroup of order 7. Hint:

consider two cases:G is either cyclic or not.

9. Let G � [a] be a cyclic group of order 91. Find a subgroup having index

13.

10. Let K be a subgroup of H, and let H be a subgroup of a group G. If the

order of K is 6 and the order of G is 144, what are the possibilities for the

order of H?

Here are two important consequences of Lagrange’s theorem.
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Theorem 2: Fermat’s Theorem

If a is an integer and p is a prime, then ap ≡ a(mod p).

Proof: Take a look at Vp � {1, 2, . . . , p − 1}, the multiplicative group

of integers mod p. The order of Vp is p − 1. It then follows that ap−1 ≡

1(mod p). Now, multiply by a. (The following more general result holds

as a consequence of Lagrange’s theorem: if n is the order of a group G

and a ∈ G, then an � e).

Fermat’s theorem extends to the following more general result.

Definition. The Euler ϕ-function. Let m ∈ Z+, then ϕ(m) denotes the number

of integers a in {0, 1, 2, . . . ,m − 1} such that gcd(a ,m) � 1.

As an example ϕ(10) � 4 since the integers 1, 3, 7, 9 are each relatively prime to

10. ϕ(11) � 10 since 11 is prime.

Theorem 3: Euler’s Theorem

If gcd(a ,m) � 1, then aϕ(m) ≡ 1 (mod m).

Proof: The order ofVm is ϕ(m). It then follows fromLagrange’s theorem

that

aϕ(m) ≡ 1 (mod m)

As an example, take m � 10 and a � 3. First, gcd(10, 3) � 1, and ϕ(10) � 4.

So 34 ≡ 1(10).
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Activity 8 - THE EULER ϕ- FUNCTION

ϕ(n) is the number of positive integers less than n that are relatively prime to

n. Start by tabulating ϕ(n) for n � 1, 2, 3, . . . , 16. Any conjectures?

Conjecture and prove formulas for

ϕ(p), ϕ(p2), ϕ(p3), ϕ(pn), ϕ(pq), ϕ(pqr)

How many generators does each of these additive groups have?

Zp , Z25, Z27, Z81, Z21, Z105

Prove that m �
∑

d |m ϕ(d), where m is a positive integer and the sum is taken

over all divisors d of m.

Prove that if n � pe1
1 pe2

2 pe3
3 then ϕ(n) � n(1 − 1

p1
)(1 − 1

p2
)(1 − 1

p3
).



Group Isomorphisms

The set of rational numbers is denoted by Q � { a
b : b , 0, a , b ∈ Z}. The

special subset of Q where b � 1 is essentially like Z � {0,±1,±2, . . . }. For all

practical purposes, these two sets are the same. This similarity is addressed in

the mathematical language that follows:

Definition. An ISOMORPHISM between two groups (G, ◦) and (G′,�) is a

mapping θ : G 7→ G′ such that

(a) θ is one-to-one

(b) θ is onto

(c) θ(a ◦ b) � θ(a)�θ(b) (θ preserves the operation).

For property (c) the operation a ◦ b takes place in G, while θ(a)�θ(b) occurs

in the image group G′. This same concept is seen in calculus when we write

lim( f (x) · g(x)) � lim f (x) · lim g(x) or ( f + g)′ � f ′ + g′ for derivatives. It is

much more notorious when seen as the students’ dream: (x + y)2 � x2 + y2 or

log x y � (log x)(log y).

Here are several examples.

Example 1

LetQ∗ � { a
1 : a ∈ Z}. ThenQ∗ is isomorphic to Z under the isomorphism

θ( a1 ) � a. θ is 1 − 1, onto and θ( a1 +
b
1 ) � a+b

1 � a + b � θ( a1 ) + θ( b1 ).

Example 2

Q∗∗ � { a
2 : a ∈ Z} is isomorphic to Z.
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Example 3

The group A � {1,−1, i ,−i} under complex multiplication is isomorphic

to the cyclic group B � {e , a , a2, a3} under the following mapping:

x 1 −1 i −i

θ(x) e a2 a a3

θ is evidently 1-1 and onto. Here, θ(ab) � θ(a)θ(b) can be checked for

each pair a , b. For example, θ[i(−i)] � θ[1] � e and θ(i)·θ(−i) � a ·a3 � e.

Example 4

Let G � (R,+), the real numbers under addition, and G′ � (R+,×),

the positive reals under multiplication. The mapping θ(x) � 2x is an

isomorphism from G onto G′. Properties of logarithms show1-1 and onto.

θ(a + b) � θ(a) · θ(b) follows from θ(a + b) � 2a+b � 2a · 2b � θ(a)θ(b).

Example 5

Again, let G � (R,+). The mapping θ : G→ G (itself) given by θ(x) � x2

is not an isomorphism.

PROBLEMS - ISOMORPHISMS

1. Find an isomorphism from (Z,+) to (2Z,+).

2. Regarding Example 3, is the following also an isomorphism? θ(1) �

e , θ(−1) � a , θ(i) � a2, θ(−i) � a3.

3. Regarding Example 4, prove that θ(x) � 2x is 1-1 and onto.
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4. In Example 5, prove that θ(x) � x2 is not an isomorphism.

5. Can you give an isomorphism from G′ � (R+,×) onto G � (R,+)?

6. If group A is isomorphic to the group B, and if A is abelian, prove that B

is abelian.

7. If θ : G 7→ G′ is an isomorphism and e is the identity of G and e′ is the

identity in G′, then θ(e) � e′ and θ(x−1) � [θ(x)]−1.

8. Let θ be a group isomorphism from G to G′, show that if θ(a) � a′ then

θ(an) � (a′)n .

9. Show that if θ(a) � a′ under a group isomorphism then a and a′ have the

same order.

10. Prove that V10 is isomorphic to V5, ie, that the set of invertibles in Z10 is

isomorphic to the invertibles in Z5.

11. Let θ : (R+,×) 7→ (R+,×) be defined by θ(x) �
√

x. Is θ an isomorphism

from (R+,×) to itself?

12. Show that V8 is not isomorphic to V10. Hint: Make a table of orders.

13. Show that V8 is isomorphic to V12.

14. Let G � {0,±3,±6,±9, . . . } and H � {0,±7,±14,±21, . . . }. Are G and

H isomorphic under addition? If yes, does that isomorphism preserve

multiplication?

From certain of these exercises you can see that essential group properties

are preserved under group isomorphisms. We say that these properties

are invariant under isomorphisms.
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HOW TO PROVE THAT TWO GROUPS ARE ISOMORPHIC:

(a) First produce a mapping θ.

(b) Check that it is 1-1 and onto.

(c) Verify that θ(a ◦ b) � θ(a)�θ(b).

HOW TO PROVE THAT TWO GROUPS G AND G′ ARE

NOT ISOMORPHIC:

(a) Show that G and G′ do not have the same order.

(b) Show that one is abelian, the other not.

(c) Look at the order of elements of each and note discrepancy.

(d) Show that one is cyclic, the other not.

(e) In general, look at invariants and see if something is not consistent.

Be careful on what you determine to be structural, ie, like the properties

just seen in (a) - (e). For example, you cannot say that Z and 5Z under

addition are not isomorphic because 13 is in Z but not in 5Z. That is not

a structural property.

15. Prove that (R∗,×), the multiplicative group of nonzero real numbers is

NOT isomorphic to (R+,×), the positive reals under multiplication. Hint:

look for an element of order 2 in each.

16. Prove that (Z,+) is not isomorphic to (Q,+).

17. Is (Q,+) isomorphic to (Q∗,×), whereQ∗ is the set of all nonzero rationals?

Hint: Assume that there is an isomorphism θ : Q→ Q∗.
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Activity 9 - THE CIRCLE GROUP

Let H � {a + bi : a , b ∈ R} with |a + bi | �
√

a2 + b2 � 1. Show that H is a

subgroup of the multiplicative group of the nonzero complex numbers.

What do the cosets of the circle group look like? ExplainwhyH � {cos t+i sin t :

t ∈ R}.

Let M be the set of 2 × 2 matrices of the form

m(x) � ©­«
cos x sin x

− sin x cos x

ª®¬ , with x ∈ R

Prove that M is a multiplicative group.

Prove that M is isomorphic to the circle group, H.

What happens if you change H to

K � {a + bi : a , b ∈ R} but with |a + bi | ≤ 1?



Direct Products

Known groups can be building blocks for forming new groups. If G1 and G2

are groups then the cartesian product G1 × G2 is a group under the operation

(a , b) ◦ (c , d) � (ac , bd) and is called the DIRECT PRODUCT. The identity is

(e1, e2) and the inverse of (a , b) is (a−1, b−1) since (a , b) ◦ (a−1, b−1) � (e1, e2).

Closure and associativity are easy to see.

Sometimes the operation is viewed as additive. For example, Z2 × Z3 is an

additive group. It has the six elements: (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2).

the element (1, 1) is a generator: 2(1, 1) � (1, 1) + (1, 1) � (0, 2), and so on.

Theorem 1

If G1 and G2 are groups then G1 × G2 is isomorphic to G2 × G1.

Theorem 2

The direct product of abelian groups is also abelian.

The proofs for theorems 1 and 2 are left as problems.

Theorem 3: Fundamental Theorem of Finite Abelian Groups

Every finite abelian group can be written as a product of cyclic groups of

prime power order. (No Proof).

Example 1

Z6 can be written as Z2 ×Z3; Z12 is isomorphic to Z3 ×Z4. The “penny"

group can be expressed as Z2 ×Z2.
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Example 2

Z18 can bewritten asZ2×Z9. Why dowe excludeZ3×Z6 andZ2×Z3×Z3

as possibilities?

PROBLEMS - DIRECT PRODUCTS

1. Is (1, 2) a generator of Z2 ×Z3?

2. Explain why Z3 ×Z3 is not cyclic.

3. Is Z2 ×Z4 cyclic? How about Z3 ×Z4?

4. What is the order of (2,6) in Z4 ×Z12?

5. What is the order of (3,10,9) in Z4 ×Z12 ×Z15?

6. What are the orders of elements in Z3 ×Z3 ×Z3?

7. Can Z2 ×Z8 be isomorphic to Z4 ×Z4?

8. When is the group Zm ×Zn isomorphic to Zmn?

9. How many abelian groups are there with order

(a) 6 (b) 10 (c) 15 (d) 21 (e) 28 (f) pq, two primes?

10. Which direct product of cyclic groups is Z24 isomorphic to?

11. G � {1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64} is a groupunder

multiplicationmodulo 65. What are thefivepossibledirect products? And

now, which one is it?

12. Find a subgroup of order 24 in Z30 ×Z12.
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13. Find a cyclic subgroup of Z30 ×Z20 with order 15.

14. Write Z2 ×Z2 ×Z3 ×Z5 as a product Zm ×Zn .

15. Compute the order of 9 in Z30. Also, compute the order of 21. Why are

these the same? What general theorem is this an example of?

16. Prove Theorem 1.

17. Prove Theorem 2.

Activity 10 - A HEISENBERG GROUP

Question: Can you have two nonisomorphic groups G1 and G2 such that the

orders of elements in G1 are exactly the same as the orders of elements in G2?

Let

G � Z3 ×Z3 ×Z3 and let H �


©­­­­­«
1 a b

0 1 c

0 0 1

ª®®®®®¬
: a , b , c ∈ Z3


,

be a multiplicative group of 3×3 matrices. What is the order of G? Of H? What

is the order of each element in G? in H?

Is G isomorphic to H?

If you replace Z3 by Z2, what group of symmetries is H isomorphic to?



Permutation Groups

Each permutation of 1, 2, 3, 4 is a one-to-one, onto function and can be viewed

in several ways:

Table:
x 1 2 3 4

f (x) 2 4 3 1
Arrow: 1→ 2, 2→ 4, 3→ 3, 4→ 1

Matrix: ©­«
1 2 3 4

2 4 3 1

ª®¬ Cycle: (124); 1→ 2→ 4→ 1→ 2. . .

With composition of functions as “multiplication", a group structure can

be formed. For example, if α �
©­«
1 2 3

1 3 2

ª®¬ and β �
©­«
1 2 3

3 1 2

ª®¬ the product αβ

becomes αβ �
©­«
1 2 3

1 3 2

ª®¬ ©­«
1 2 3

3 1 2

ª®¬ �
©­«
1 2 3

3 2 1

ª®¬ � (13), using both matrix and

cycle forms. Also, βα �
©­«
1 2 3

2 1 3

ª®¬ � (12), so composition of permutations is not

commutative.

The set of all permutations on Xn � {1, 2, . . . , n} is denoted by Sn .

Definition. Sn is called the SYMMETRIC GROUP on Xn � {1, 2, 3, . . . , n}.

Theorem 1

Sn is a group under composition of permutations.

Proof: To simplify notation and computation let’s use n � 3, 4, 5, 6 for

illustration purposes. The leap to general n just requires . . . in most cases.
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Identity: e �
©­«
1 2 3 4

1 2 3 4

ª®¬ is easy to verify.

Inverses: The inverse of ©­«
1 2 3 4

a b c d

ª®¬ is ©­«
a b c d

1 2 3 4

ª®¬
since ©­«

1 2 3 4

a b c d

ª®¬ ©­«
a b c d

1 2 3 4

ª®¬ � e.

Closure: The composition of two permutations is another permutation.

Associativity: Easy to show.

Example 1

©­«
1 2 3 4

3 1 2 4

ª®¬
−1

�
©­«
3 1 4 2

1 2 3 4

ª®¬ �
©­«
1 2 3 4

2 4 1 3

ª®¬. Moving columns around

doesn’t change the function.

Example 2

The permutation α �
©­«
1 2 3 4 5 6

6 4 1 2 5 3

ª®¬ could be expressed in cycle form

as α � (163)(24)(5). Note here that (163) � (631) � (316), (24) � (42), and

(5) means leave 5 fixed, so we don’t need to write it. Also, always start

any cycle with the smallest integer - so we don’t need (631) or (316). Just

use (163).

Example 3

What is the order of α � (163)(24) in S6?

The reader should verify the following computations:

α2 � (163)(24)(163)(24) � (136)
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α3 � α2α � (136)(163)(24) � (24)

α4 � α2α2 � (163)

α5 � α2α3 � (136)(24) � well, we are nearly done. Notice that disjoint

cycles commute.

α6 � α3 · α3 � (24)(24) � (1)

So the order of α � (163)(24) � 6 � lcm(2, 3).

The “leap frog" technique is useful in computing powers of cycles. Let

α � (14253).

α2 �1̇ 4 2̇ 5 3̇ 1 4̇ 2 5̇ 3 1̇ 4 2̇ 5 3̇. . .� (12345)

α3 �1̇ 4 2 5̇ 3 1 4̇ 2 5 3̇ 1 4 2̇ 5 3 1̇ 4 2 5̇ 3. . .� (15432).

Example 4

The order of (132) is 3, but the order of (123)(132) is 1 since (123)(132) �

(1)(2)(3).

CAUTION:Eachpermutationhas tobewritten as aproduct ofDISJOINT CYCLES

before you can compute its order.
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PROBLEMS - PERMUTATION GROUPS

1. Express the inverse of ©­«
1 2 3 4

3 4 1 2

ª®¬ in cycle form.

2. Compute the order of each:

(a) (12)(345) (b) (24) (c) (13)(12) (d) (132)(23) (e) (12)(13)(14)

(f) (1234)(587)

3. Verify that (1423)=(14)(12)(13). Generalize.

4. Express (13)(12)(345) as a simple cycle.

5. Express α � (1234)(3456) as a product of disjoint cycles. What is the order

of α?

6. Let α � (12)(34), β � (13)(24), γ � (14)(23). Compute αβ and αγ.

7. Express (132)(154)(123)(145) as a 3-cycle.



Groups of Symmetries

Symmetries of an Equilateral Triangle

Our goal here is to study such symmetries and to see how we can create

group structures. Introduction of good notation will help. We start with the six

symmetries of an equilateral triangle.

Lets take the following as our initial position, the identity, or “do nothing".

1

23

Let r denote a clockwise rotation through 120°, and so r2 will be a 240°
rotation:

1

3 2

3

2 1

2

1 3

1

3 2

r r r1

3 2

3

2 1

2

1 3

1

3 2

r r r1

3 2

3

2 1

2

1 3

1

3 2

r r r1

3 2

3

2 1

2

1 3

1

3 2

r r r

Applying r a third time will bring us back to our starting position, or r3 � 1.

H � {1, r, r2} is a nice subgroup.

Now do a flip, f , about the altitude holding vertex 1 fixed. This looks like:
1

3 2

1

2 3

f1

3 2

1

2 3

f

The reader should check that r2 f (r2 followed by f , in that order) will yield

another flip, one that pivots about vertex 3. The last symmetry, another flip, is

given by r f which is a pivot about vertex 2.
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Summary: The six symmetries of an equilateral triangle can be expressed in

terms of just r and f . They are, {1, r, r2, f , r f , r2 f }.

In the problems you are asked to make the 6 × 6 operation table for these six

symmetries. As you try to complete the table you may run into trouble with a

few like f r, f r2, f r f . . .

Example 1

In the problems you are asked to draw a sequence of triangles to show

f r � r2 f .

Example 2

f r2 � ( f r)r � (r2 f )r � r2r2 f � r f

Example 3

f r f � ( f r) f � r2 f f � r2.

There is something convenient about switching to cycle notation. Notice

that r � (132) and f � (23). It is not hard to see that r2 � (123) and r f � (13),

r2 f � (12). Nowwe can be independent of the pictures, and generalizations are

easier to see.

BIGCAUTION! Rotate the pictures clockwise, but perform composition of func-

tions (cycles) right to left just as you do when computing f (g(x)). Now cycle

form corresponds with the r − f version.
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The Rectangle Group

(or how does the post office cancel stamps?)

There are four rigid motion symmetries of a rectangle.

1 2

34

4 3

21

2 1

43

3 4

12

H: HORIZONTAL FLIP

V : VERTICAL FLIP R: 180° CLOCKWISE ROTATION

I: DO NOTHING

The interior numbers indicate theirmovement from I, the original position. The

group table for G � {I ,H,V, R} is shown next:

◦ I H V R

I I H V R

H H I R V

V V R I H

R R V H I

G is evidently a Klein 4-group; the orders of H,V, and R are 2.

The Rectangle Group in Cycle Form

It is easy to see that the following correspondenceholds: I � (1),H � (14)(23),V �

(12)(34) and R � (13)(24). In the problems you are asked to make the operation
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table for the rectangle group in cycle form.

PROBLEMS - GROUPS OF SYMMETRIES

1. Draw a sequence of triangles to show that f r � r2 f .

2. Why is f 2 � (1), the identity?

3. Show that f (r2 f ) � r.

4. Show that (r2 f )(r f ) � r.

5. Make the multiplication table for {1, r, r2, f , r f , r2 f }.

6. Make the multiplication table for {(1), (132), (123), (23), (13), (12)}.

7. Make the operation table for the rectangle group in cycle form.
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Activity 11 - THE OCTIC GROUP

The octic group consists of the symmetries of a square: some rotations and flips

about the diagonals and horizontal/vertical flips. Start with

1 2

34

and let r be a 90◦ clockwise rotation, and let f denote a flip about the diagonal

fixing 1 and 3. Determine that there are 8 symmetries. The easiest are e , r, r2, r3.

Show that f r � r3 f and use this to complete the 8 × 8 operation table for the

octic group {e , r, r2, r3, f , r f , r2 f , r3 f }.
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Activity 12 - A TETRAHEDRON

List the 12 symmetries of a regular tetrahedron in cycle form. For example,

spinning about vertex 1 gives two : (234) and (243). What is the other type?

1

2

3

4



Quotient Groups

Cosets and Normal Subgroups

Lagrange’s Theorem states that the order of any subgroup H divides the

order of a (finite) group G. This is (was) proved by partitioning the elements of

G into nonoverlaping sets called cosets. For a ∈ G a (left) coset of H is the set

{aH} consisting of all products ah with h ∈ H. The number of cosets is called

the index of H in G. A right coset is the set {Ha : a ∈ G}. If aH � Ha for every

a ∈ G, as sets, we say that H is a normal subgroup. For an additive group, the

notation a + H � H + a is used.

Example 1

Let S3 � {1, r, r2, f , r f , r2 f } be the rigid transformations of an equilateral

triangle. H � {1, f } is not a normal subgroup: rH � {r, r f }, but Hr �

{r, f r} = {r, r2 f }. As sets, rH , Hr.

Example 2

H � {1, r, r2} is a normal subgroup of G � S3. aH � Ha if a ∈ H. So now

try the other three: f H � { f , r2 f , r f } = H f , r f H � {r f , f , r2 f } � Hr f ,

and also r2 f H � Hr2 f . So aH � Ha, for all a ∈ G.

The good news is that if G is abelian, all subgroups are normal. Here is

another helpful result: If the index of H in G is 2, H is normal. That’s why it is

easy to see that the H in example 2 is normal.

It turns out that if H is normal you canmultiply cosets! You get the following

nice process: aHbH � abH. This is not hard to show: abH ⊆ aHbH is easy to

show. For aHbH ⊆ abH, use normality.

61



62

Theorem 1

Let N be a normal subgroup of G. The product aNbN of cosets is the

coset abN .

Theorem 2

The (left) cosets of a normal subgroup H in G form a group.

Proof:

1. Closure: aHbH = abH

2. Identity: If e is the identity in G, eH is the identity in the new group

since eHaH = eaH = aH = H = aeH = aHeH.

3. Inverses: The inverse of aH is a−1H since aHa−1H = a−1aH = H =

a−1HaH.

4. Associativity: aH(bHcH) = aHbcH = abcH, and (aHbH)cH =

abHcH = abcH.

Definition. If N is a normal subgroup of G, the set of all left cosets aN form a

group called the QUOTIENT GROUP, or Factor Group, denoted G/N .

Example 3

Let G = Z6 and H = {0, 3}. Since Z6 is abelian, H is a normal subgroup.

The three cosets are H, 1 + H = {1, 4} and 2 + H = {2, 5} and G/H =

{H, 1 + H, 2 + H}. We next make the addition table for Z6, with the

elements rearranged as 0, 3, 1, 4, 2, 5; next to it make the operation table
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for G/H:
⊕ 0 3 1 4 2 5

0 0 3 1 4 2 5

3 3 0 4 1 5 2

1 1 4 2 5 3 0

4 4 1 5 2 0 3

2 2 5 3 0 4 1

5 5 2 0 3 1 4

H 1 + H 2 + H

H H 1 + H 2 + H

1 + H 1 + H 2 + H H

2 + H 2 + H H 1 + H

These two tables look almost the same!

There are several features of this example to notice:

1. The three cosets partition the elements ofZ6 into three disjoint sets.

2. H = {0, 3} is the identity coset.

3. Some funny addition is going on: (1 + H) + (2 + H) = {1, 4} + {2, 5}

= {1 + 2, 1 + 5, 4 + 2, 4 + 5} = {3, 6, 6, 9} = {0, 3} =H.

4. The inverse of 1 + H is 2 + H.

5. The index of H in G is 3.

Example 4

Let G = V15 = {1, 2, 4, 7, 8, 11, 13, 14} and H = {1, 11}. H is normal in G

(why?). The four cosets of H are H, 2H = {2, 7}, 4H = {4, 14}, and 8H =

{8, 13}. The quotient group table is:
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H 2H 4H 8H

H H 2H 4H 8H

2H 2H 4H 8H H

4H 4H 8H H 2H

8H 8H H 2H 4H

Which group of order 4 is this? Z4 or the Klein 4-group?

Example 5

Let G =Z, and H = 3Z. Then the cosets in G/H are 0+H, 1+H and 2+H.

If H = 2Z the cosets are simply the set of even integers, and the set of odd

integers.

PROBLEMS - QUOTIENT GROUPS

1. List the left cosets of the subgroup 3Z in Z. Now list the right cosets.

These are the same since the additive group Z is an abelian group.

2. List the left cosets of H � {1, r f } in S3. Now list the right cosets. What do

you notice?

3. Let H � {...,−10,−5, 0, 5, 10, ...}. Find all the left cosets of H in Z. Are

−3 + H and −8 + H in the same coset? Where would you find 21? How

about −17?

4. Let H � {1, 8} be a subgroup of V9 � {1, 2, 4, 5, 7, 8}, the multiplicative

group of the invertibles mod 9. Make all left cosets of H in V9, and make

the group table for V9/H.
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5. H � {1, r, r2} is a normal subgroup of S3 � {1, r, r2, f , r f , r2 f }. Make the

group table for the quotient group S3/H.

6. What is the size of 3+ H where H � {0, 6, 12} is a subgroup of Z18? What

is the order of 3 + H in Z18/H? Is this quotient group cyclic?

7. If G is an abelian group, explain why every subgroup of G is normal.

8. Determine the elements of the quotient group for each of the following:

(a) G � Z12 H � {0, 4, 8}

(b) G � Z H � 2Z

(c) G � D4 H � {1, r, r2, r3} where D4 is the group formed from the

symmetries of a square

(d) G � V15 H � {1, 4, 11, 14}

(e) G � V15 H � {1, 4}

9. Let G � [a] be a cyclic group of order 21 generated by a, and let H be

a subgroup having index 3. List the elements of H and the elements of

G/H. Make the operation table for the quotient group G/H.

10. Let G be a cyclic group of order 91 and H be a subgroup having index 7.

List the cosets of the quotient group G/H.

11. If the index of a subgroup H in G is 2, prove that H is normal.

12. The six roots of x6−1 � 0 formamultiplicativegroupG � {1, r, s ,−1,−r,−s}

where 1, r, s are roots of x3 − 1 � 0. Form the left cosets of H � {1, r, s}

and make the operation table for G/H.
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13. Let G � {000, 001, 010, 011, 100, 101, 110, 111} under bitwise additionmod

2, and H � {000, 011}. List the left cosets of H.

14. The elements of theQuaterniongroupG are {1,−1, i ,−i , j,− j, k ,−k}. Find

a normal subgroup H and make the operation table for G/H.

15. Prove that if G is an abelian group, so is the quotient group G/H for any

normal subgroup H.

16. Let G � Z4×Z4 and let N be the cyclic subgroup generated by the element

(3, 2). Show that G/N is isomorphic to Z4.

17. Q/Z is an additive abelian group, with infinite order. What is the order

of the coset 2/7 +Z?

18. H � {(x , 5x) : x ∈ R} is a subgroup of the additive group R × R. Give

a geometrical description of H and of the coset (2, 7) + H. What do the

cosets of H look like? What do the cosets of the circle group in the complex

numbers look like?

19. Let N � {(x , y) : y � −x} be a subgroup of the additive group R × R.

Describe the cosets of N .



A Brief Look at Rings

This type of structure should ring a bell. As in the integers Z, in a ring we can

add, subtract, multiply and even distribute. So think of Z as our model of a

ring.

Definition. A ring R is a set with two binary operations such that

(a) R is an abelian group under addition.

(b) R is closed and associative under multiplication.

(c) Multiplication is distributive over addition, ie, a(b + c) � ab + ac and

(b + c)a � ba + ca.

A commutative ring is a ring where ab � ba.

Example 1

Z,Q,R, and C are commutative rings.

Example 2

Zm , the ring of integers modulo m, is commutative.

Example 3

The setZ[x] of all polynomials in x with coefficients inZ is a commutative

ring.

Definition. If a ring R has a multiplicative identity 1, then an element a in R is

an invertible if there is an a−1 such that a a−1 � 1; 1 is called the unity.
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Example 4

2Z is a commutative ring with no unity.

Example 5

(Z, ⊕, ⊗) is a ring where a ⊕ b � a + b − 1 and a ⊗ b � a + b − ab. Closure

under ⊕ is clear since a ⊕ b � a + b − 1 ∈ Z. The additive identity is

1 since a ⊕ 1 � a + 1 − 1 � a � 1 ⊕ a. The inverse of a is 2 − a since

a ⊕ (2− a) � a + 2− a − 1 � 1. The binary operation ⊕ is associative since:

a ⊕ (b ⊕ c) � a ⊕ (b + c − 1) � a + b + c − 2 and (a ⊕ b) ⊕ c � (a + b − 1) ⊕ c �

a + b − 1 + c − 1 � a + b + c − 2.

Closure under multiplication is clear since a ⊗ b � a + b − ab ∈ Z. Finally,

we check distributivity: a⊗(b⊕c) � a⊗(b+c−1) � a+b+c−1−(ab+ac−a)

and (a ⊗ b) ⊕ (a ⊗ c) � (a + b − ab) ⊕ (a + c − ac) � 2a + b + c − ab − ac − 1.

The reader should check that ⊗ is associative.

A subring (like a subgroup) of a ring R is a subset of R that is a ring. The set

{0,±5,±10, . . . } is a subring of Z.

PROBLEMS - A BRIEF LOOK AT RINGS

1. Show that Z[
√

2] � {a + b
√

2 : a , b ∈ Z}is a ring.

2. In a ring R, show that a2−b2 � (a+b)(a−b) if and only if R is commutative.

3. Show that Z[i] � {a + bi : a , b ∈ Z} is a ring. Z[i] is called the ring of

Gaussian Integers.

4. Find all invertibles in Z[i].

5. Find the unity in S � {0, 2, 4, 6, 8} under addition mod 10.
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6. What are the invertibles in Z ×Z?

7. Let R � {0, 1, c} be a ring with unity.

(a) Show that 1 + 1 � c and that 1 + 1 + 1 � 0.

(b) Show that c2 � 1.

(c) Make the × and + tables for R.

8. Let R � {0, 1, c , d} be a ring (with unity 1) with c , d invertibles. Make the

multiplication table for R.

9. For a , b ∈ Q, define ⊕ and ⊗ by a ⊕ b � ab and a ⊗ b � a + b. Is (Q, ⊕, ⊗) a

ring?

Activity 13 - COMPLETE THE RING

Complete the multiplication table for the ring R � {a , b , c , d}

+ a b c d

a a b c d

b b a d c

c c d a b

d d c b a

∗ a b c d

a a a a a

b a b

c a a

d a b c



Integral Domains

When youwere asked to solve x2−7x+12 � 0, you set each factor in (x−3)(x−4)

to zero and solved x − 3 � 0 or x − 4 � 0. Now try that in Z12; you get 3, 4 and 7

as solutions. This quadratic has three roots.

Definition. If a and b are nonzero elements of a ring and ab � 0, we call a and b

0-divisors.

Example 1

nZ12, the 0-divisors are 2, 3, 4, 6, 8, 9, 10 since 2 ·6 � 3 ·4 � 8 ·9 � 6 ·10 � 0

in Z12. These seven elements are precisely those numbers not relatively

prime to 12.

Definition. An integral domain is a commutative ring D with a unity, that has

no 0-divisors.
These are These are not

Z,Q,R Z6,Z12

Zp , p a prime Zm ,m composite

Z[
√

2] Z ×Z

Z[x] 2Z

Z[i] Z5[i]
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PROBLEMS - INTEGRAL DOMAINS

1. List all 0-divisors in Z20. What are the invertibles?

2. Find all solutions to x2 − 4x + 3 � 0

(a) in Z12

(b) in Z11

3. Find a 0-divisor in Z5[i] � {a + bi : a , b ∈ Z5}.

4. Show thatZ×Z, withmultiplication and additiondefined coordinatewise,

is not an integral domain.

5. Why is 2Z not an integral domain?

6. Let S � {a , b , c} and P(S) be the power set of S, ie, the set of all subsets

of S including φ and S. Define the product AB to be A ∩ B and the sum

A + B to be (A∪ B) − (A∩ B), the elements in A∪ B but not those in A∩ B.

(a) Show that P(S) is a commutative ring.

(b) What is the unity?

(c) What acts like a “0”?

(d) Is P(S) an integral domain?

7. In Z6 show that ab � ac does not imply b � c.

8. Show that M2(Z2), the set of all 2 × 2 matrices with entries in Z2 with the

usual matrix operations is not an integral domain.
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9. Prove that right and left cancellation laws hold in a ring R if and only if R

has no zero divisors. In other words, if c , 0 and c is not a 0-divisor, then

either ac � bc or ca � cb implies a � b.

10. Is the ring of Gaussian integers an integral domain?

11. Is the direct product of integral domains an integral domain?

12. SupposeD � {0, d2, d3, . . . , dn} is an integral domain. Prove that {d2, d3, . . . , dn}

is a multiplicative group.



Fields – The Finale

A field is a commutative ring with unity where every nonzero element is an

invertible. In otherwords, a field is an integral domainwhose nonzero elements

form a multiplicative group. More formally, a field F

(a) is an abelian group under addition

(b) is an abelian group under multiplication (don’t count 0)

(c) has the property that multiplication is distributive over addition.

Example 1

Q, R, C, Zp , Q[
√

2] are fields.

Example 2

Z3[i], Z7[i] andZ11[i] are fields; butZ2[i], Z5[i] andZ13[i] are not. [Note

that when p ≡ 3(mod 4), Zp[i] is a field].

Theorem 1

Every finite integral domain D is a field.

Proof: Let a ∈ D and a , 0; we show that a has a multiplicative in-

verse. Let D � {0, 1, a1, a2, . . . , an}. The elements a·1, a a1, a a2, . . . , a an

are surely distinct since D is an integral domain, and none of these prod-

ucts is 0 since D has no zero-divisors. So one of these must be 1; let’s say

a ai � 1. But then ai is the inverse of a.
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PROBLEMS - FIELDS

1. Verify that Q[
√

2] is a field. Show that 2 + 3
√

2 has an inverse.

2. Why is Z2[i] not a field?

3. Show that each of the following is not a field by finding 0-divisors:

(a) Z13[i]. (b) Z17[i].

4. Is Z[
√

2] a field?

5. Let F � {0, 2, 4, 6, 8} under addition and multiplication modulo 10. Prove

that F is a field.

6. Z3[i] is a field with 9 elements.

(a) Make the 8 by 8 multiplication table.

(b) Make a table of inverses and orders of each element.

(c) Which familiar group is the multiplication group isomorphic to?



Selected Answers

1. Binary Operations
1. (a) No; a − b , b − a. (b) No. (c)Yes. (d) Yes; 1 · a � a, No inverses.

3. (a) Yes; A ∪ B � B ∪ A (b) No; ∅ is the identity; no set in X satisfies

{a} ∪ X � ∅.

5. (a) 2 ◦ 5 � 175; 3 ◦ 2 � 625 (b) No; no identity.

7. Easy.

9. e � 10; no inverses.

11. (a) Yes. (b) e � 1 since 1�a � 1 + a − 1 � a � a�1. (c) Yes; the inverse of m

is 2 − m since m�(2 − m) � 2 − 1 � 1.

13. (a) No; 1�2 � 6, but 2�1 � 9. (b) Three, you should find these.

15. Try 1�0�2 and then 0�1 for commutativity.

17. (a) No; 23 , 32. (b)No, try 2�1�3. (c)a(bc).

2. Closure
1. (a) No; 1 + 4 � 5. (b)No; 4 − 1 � 3. (c) Yes, a2b2 � (ab)2

3. No; 4 + 6 � 10 < C.

5. (a) No; 1 + 4 � 5, (b) Yes; (3h + 1)(3k + 1) � 9hk + 3(h + k) + 1.

7. H � {0,±6,±12, . . . }; G ∩ H � {0,±12,±24, . . . }, 12h − 12k � 12(h − k).
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9. Yes; yes.

11. No

13. Let S be closed under subtraction. If a ∈ S, a − a � 0 ∈ S.

15. (a) 5 � 1 + 4, 13 � 4 + 9, 65 � 1 + 64. (b) Yes, we can derive that

(m2
1 + n2

1)(m2
2 + n2

2) � (m1m2 − n1n2)2 + (n1m2 + m1n2)2

17. Yes

19. 7 and 9

3. Groups
1. Check the four axioms.

3. The identity is 16.

5. 71 � 7, 72 � 9, 73 � 3, 74 � 1; 91 � 9, 92 � 1

7. G is cyclic and generated by i or −i.

9. G � {00, 01, 10, 11} under bitwise addition mod 2.

11. Mimic the table for B2; G is Abelian, but not cyclic.

13. 0 is the additive identity; the inverse of 7a is −7a.

15. {0}, {0, 3}, {0, 2, 4} and Z6 are the subgroups of Z6.

17. {0}, {0, 6}, {0, 3, 6, 9}, {0, 4, 8}, {0, 2, 4, 6, 8, 10}, and Z12 are the subgroups

of Z12.

19. The elements 0 and 2 have no inverses.
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21. 1, 2, 3, 4 are generators. For example, 0 ·2 � 0, 1 ·2 � 2, 2+2 � 4, 2+2+2 �

1, 2 + 2 + 2 + 2 � 3.

23. (a) 0, 3. (b) 0, 4. (c) 0, 2, 3, 5.

25. The identity is a0 � 1; The inverse of ah is a−h . Since ah ak � ah+k , H is

closed.

27. The identity is ©­«
0 0

0 0

ª®¬; the inverse of ©­«
a b

c d

ª®¬ � ©­«
−a −b

−c −d

ª®¬.
29. 0x + 0 is the identity; the inverse of ax + b is −ax − b.

31. (ab)k+1 � (ab)(ab)k � (ab)(ak bk) � (ba)(ak bk) � bak+1bk � ak+1bk+1 since b

commutes with a.

4. More on Cyclic Groups
1. V9 is cyclic with 2 as a generator.

3. H � {e , a8, a16}; o(a5) � 24. List (a5)k for k � 0, 1, . . . , 24.

5. {1, 3, 7, 9} is cyclic. G � [3].

7. 6; [25] � {0, 25, 20, 15, 10, 5}

9. (a) 6. (b) 6. (c) 8. (d) 16.

11. (a) ω is a root of ω3 − 1 � (ω − 1)(ω2 + ω + 1). (b) ω3 − 1 � 0. (c) 22. (d) 8,

since (cos π
4 + i sin π

4 )8 � 1 and no lower power yields 1. (e)∞; start taking

powers using De Moivre’s Theorem.

13. (a) 3. (b) 2.

Wilson’s Theorem
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1. 2 · 7 ≡ 3 · 9 ≡ 4 · 10 ≡ 5 · 8 ≡ 6 · 1 leaving 12 ≡ −1(13).

3. 2 · 3 · 4 · · · · · p − 2 has an even number of elements x that pair up with x−1.

Now use x · x−1.

5. Use (p − 2)! ≡ 1(p).

6. x � 1 or x � −1. If x2 − 1 � (x − 1)(x + 1) ≡ 0(p), then x � 1 or x � −1.

Since (x + 1) − (x − 1) � 2, either p |(x + 1) or p |(x − 1), but not both.

7. Hints: 30 ≡ −29(59) and 31 ≡ −30(61).

5. Lagrange’s Theorem
1. H � {0, 6}, 1 + H � {1, 7}, 2 + H � {2, 8}, 3 + H � {3, 9}, 4 + H � {4, 10},

and 5 + H � {5, 11}.

3. V9 � {1, 2, 4, 5, 7, 8}; H � {1, 8}, 2H � {2, 7}, 4H � {4, 5}. {1, 4, 7} is

another subgroup.

5. If o(G) � p , then by Lagrange’s Theorem every element g , e has order p.

So any one of these is a generator.

7. 1, 3, 5, 9, 15, 45.

9. H � {e , a13, a26, . . . , a78} has order 7; hence the index is 13.

6. Isomorphisms
1. θ(x) � 2x.

3. For onto, choose b ∈ R+, then solve 2x � b for x � log2 b. For one-to-one,

if a , b in R, 2a , 2b in R+.

5. Try θ(x) � ln x.
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7. θ(e)θ(e) � θ(ee) � θ(e) � e′θ(e). Right cancellation gives θ(e) � e′.

xx−1 � e gives θ(x)θ(x−1) � θ(e) � e′ and so θ(x−1) � [θ(x)]−1.

9. Let θ(a) � a′ and let o(a) � q and o(a′) � q′, then e � aq and θ(aq) �

[θ(a)]q . So [θ(a)]q � e′. Since q′ is the least integer m with [θ(a)]m � e′,

we have q ≥ q′. Similarly, q′ ≥ q and hence q � q′.

11. Since √x y �
√

x
√

y, θ(x y) � θ(x)θ(y). θ is one-to-one and onto.

13. V12 � {1, 5, 7, 11}. θ(1) � 1, θ(3) � 5, θ(5) � 7, θ(7) � 11 is an isomor-

phism. Alternatively, they are both Klein 4-groups.

15. −1 has order 2 in (R∗,×), but (R+,×) has no element of order 2, since

x2 � 1 �⇒ x � 1.

17. Let a ∈ Q and suppose θ(a) � −1; −1 must have a preimage if θ is an

isomorphism. Then −1 � θ( a2 +
a
2 ) � [θ( a2 )]2, a contradiction.

7. Direct Products
1. Yes; you should compute m(1, 2) for m � 0, 1, . . . , 5.

3. No; Yes. (1, 1) is a generator for Z3 ×Z4. In fact, Z3 ×Z4 is isomorphic to

Z12, a cyclic group.

5. 60; o(3) in Z4 is 4; o(10) in Z12 is 6; o(9) in Z15 is 5. LCM(4, 6, 5) � 60.

7. No; compare orders

9. (a) 1. (b) 1. (c) 1. (d) 1. (e) 1.

11. Z16,Z4×Z4,Z2×Z8,Z2×Z2×Z4,Z2×Z2×Z2×Z2. You should compare

orders to see which one it is.
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13. Z3 ×Z5 is one possibility. How about [(2, 0)] or [(10, 4)]. There are others.

15. o(9) � 10; o(21) � 10. 9 is the inverse of 21 since 9 + 21 ≡ 0. In general,

o(x) � o(x−1).

17. Let G1 and G2 be Abelian groups. Choose (a , b) and (c , d) ∈ G1×G2. Then

(a , b)(c , d) � (ac , bd) � (ca , db) � (c , d)(a , b).

8. Permutation Groups
1. (13)(24)

3. (1abcd) � (1a)(1b)(1c)(1d) and similarly for an n−cycle.

5. (124)(356)

7. (142)

9. Symmetries of an Equilateral Triangle
2. A flip, followed by a flip, brings you back to the starting point.

3. f r2 f � ( f r)(r f ) � r2 f r f � r2r2 f f � r4 f 2 � r.

10. Quotient Groups
1. 3Z, 1 + 3Z, 2 + 3Z; 3Z, 3Z + 1, 3Z + 2.

3. H, 1 + H, 2 + H, 3 + H, 4 + H; Yes; 21 ∈ 1 + H,−17 ∈ 3 + H.

5. H � {1, r, r2} and f H � { f , r2 f , r f } are the only cosets.

7. aH � Ha for all a ∈ G and every subgroup H.

9. H � {e , a3, a6, a9, a12, a15, a18}; G/H � {H, aH, a2H}

11. If the index is 2, there are only two cosets, say H and aH. But then Ha

must be either H or aH, so Ha � Ha since Ha , H.
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13. 001 + H � {001, 010}, 100 + H � {100, 111}, 101 + H � {101, 110}.

15. aH · bH � abH � baH � bHaH

17. Order of 2
7 +Z is 7 since 7(27 +Z) � 2 +Z � Z.

19. Lines parallel to y � −x.

Integral Domains
1. 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18. The invertibles are 1, 3, 7, 9, 11, 13, 17, 19.

3. (1 + 2i)(1 + 3i) � 1 + 5i − 6 � 0; or (2 + i)(2 − i) � 0.

5. No unity.

7. 2 · 4 � 2 · 1, but 4 , 1.

9. If R has no 0−divisors, then ac � bc implies ac − bc � (a − b)c � 0 and so

a − b � 0 since c , 0. You should now prove the converse.

11. No. (0, 1)(1, 0) � (0, 0).

11. A Brief Look at Rings
1. Check the three ring properties. For example, (a + b

√
2)(c + d

√
2) � ac +

(bc + ad)
√

2 + 2bd shows closure under multiplication.

3. Check Properties. (a + bi)(c + di) � ac − bd + (bc + ad)i shows closure

under multiplication.

5. 6 is the unity.

7. (a) First make the addition table, then 1 + 1 � c , 1 + 1 + 1 � c + 1 � 0. (b)

c2 � (1 + 1)(1 + 1) � 1 + 1 + 1 + 1 � 0 + 1 � 1.
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9. Distributivity fails. 1⊗ (2⊕ 3) � 1⊗ 6 � 7. But (1⊗ 2) ⊕ (1⊗ 3) � 3⊕ 4 � 12.

12. Fields
1. 1

2+3
√

2
�

1
2+3
√

2
· 2−3

√
2

2−3
√

2
�

2−3
√

2
−14 � −1

7 +
3
14
√

2

3. (a) (2 + 3i)(2 − 3i) � 4 + 9 � 0 (b)(4 + i)(4 − i) � 0

5. 6 is the unity; 2 · 8 ≡ 4 · 4 ≡ 6 · 6 ≡ 8 · 2 ≡ 6 provides inverses.
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