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DAY 1 PROPERTIES OF THREE TABLES

• = usual complex multiplication

• 1 −1 i − i

1

−1

i

−i

PROPERTIES, OBSERVATIONS
1.

2.

3.

⊗ = units digit in regular multiplication

⊗ 1 3 7 9

1

3

7

9

1.

2.

3.

⊕ = bitwise addition, 0 if same, 1 if different

⊕ 00 01 10 11

00

01

10

11

1.

2.

3.
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WORKSHEET ON CLOSURE I

A set S = {a, b, c, . . . } is closed under a binary operation ◦ if whenever x and y are
elements of S so is x ◦ y.

For each of the following if the answer is yes, give a reason and if no, provide a coun-
terexample.

Task 1 Is E = {0, 2, 4, 6, 8, . . . } closed under the binary operation of addition?

� yes,� no Reason: Let 2m and 2n be arbitrary elements in E.

Then since . . .

How about under multiplication?

Task 2 Is A = {0, 1, 4, 9, 16, . . . } closed under addition?

Under subtraction?

Under multiplication?
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Task 3 Is the set of all rational numbers of the form 2m3n, where m,n ∈ Z, closed under
multiplication?

Task 4 Is the set of all positive rational numbers closed under addition? Multiplication?

Task 5 Are the complex numbers of the form m + ni where m and n are integers closed
under multiplication?

Task 6 Is the set {m+ n
√

2 : m,n ∈ Z} closed under multiplication?

Task 7 Are the irrationals closed under multiplication? Under subtraction?
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WORKSHEET ON CLOSURE II

Let Z = {. . . ,−2,−1, 0, 1, 2, . . . }
QUESTION: Which of the sets 3Z, 1 + 3Z, 2 + 3Z are closed under subtraction?

Task 1 List the elements of 3Z; choose two and subtract them.

Task 2 What does it mean to say 3Z is closed under subtraction?

Task 3 Is 3Z closed under subtraction? If yes, prove it.

Task 4 Is 1 + 3Z closed under subtraction?

Task 5 Is 2 + 3Z closed under subtraction?

Task 6 Why must a set of integers contain 0 to be closed under subtraction?
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WORKSHEET ON CLOSURE III

PROBLEM: Prove that if S and T are sets of integers closed under subtraction so is the
intersection S ∩ T .

Task 1 Say in your own words what it means to say S is closed under subtraction.

Task 2 What do you have to show in order to check that S ∩T is closed under subtraction?

Task 3 Draw a Venn diagram as an aid, and resolve the problem.

Task 4 If S and T are sets of integers closed under subtraction is the union S∪T also closed
under subtraction? If yes, prove it, if no give a counterexample.
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WORKSHEET ON RESIDUE CLASSES

Congruence Modulo m is an EQUIVALENCE RELATION on Z, the set of all integers.

R − REFLEXIVE: a ≡ a(m)
S − SYMMETRIC: If a ≡ b(m) then b ≡ a(m)
T − TRANSITIVE: a ≡ b(m) and b ≡ c(m) then a ≡ c(m)

The relation congruence partitions Z into disjoint EQUIVALENCE CLASSES or
RESIDUE CLASSES.

When m = 2, Z is partitioned into the classes 2Z and 1 + 2Z.

2Z = {. . . ,−4,−2, 0, 2, 4, . . . }
1 + 2Z = {. . . ,−3,−1, 1, 3, 5, 7, . . . }

Task 1 Explain why the classes 2Z and 1 + 2Z are disjoint.

Task 2 What the residue classes when m = 3? Are they disjoint? Why?

Task 3 When m = 4? Explain.
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WORKSHEET ON MODULAR ARITHMETIC

a ≡ b(mod m) means a and b have the same remainder when divided by m; or that a− b is
divisible by m, or a− b = mk. An example: 17 ≡ 9(mod 4) since 4 divides 17− 9.

Task 1 Complete the missing four rows:

0 1 2 3 4 5 6 7 8 9 10 11 12

Mod 2

Mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0

Mod 4

Mod 5

Mod 6

Task 2 Tables of addition Mod 5 and Mod 6 would look like:

⊕ 0 1 2 3 4

0

1 1 2 3 4 0

2

3

4

⊕ 0 1 2 3 4 5

0

1

2

3

4

5
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Let Z6 = {0, 1, 2, 3, 4, 5} be the six elements you used to make the 6 by 6 table in Task
2. If you examine that addition table, you can see that each of the following subsets are
closed under the binary operation ⊕. The relationship among these subsets is shown in the
diagram.

A ={0}

B ={0, 3}

C ={0, 2, 4}

D ={0, 1, 2, 3, 4, 5}
A

B C

D

Task 3 Make the ⊕ table for Z8 = {0, 1, 2, 3, 4, 5, 6, 7}, list all the subsets closed under ⊕,
and make a diagram as above.

⊕ 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

A = {0}

B =

C =

D =

Task 4 Without making the addition table, can you give all the closed subsets of Z12?
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WORKSHEET ON CANCELLATION

Cancellation Theorem: If either ab = ac or ba = ca in a group G, then b = c.

Task 1 Let’s try to prove right cancellation.

The hypothesis for right cancellation is:

If the element a is in G, is also in G.

Now show how to use this latter element on b a = c a and conclude that b = c.

– CONNECTIONS –

Task 2 Let A,B,C be sets in a universe S. If A ∪ B = A ∪ C is it necessarily true that
B = C?

Task 3 Does A ∩B = A ∩ C imply B = C?

Task 4 For 2 by 2 matrices A,B,C does AB = AC imply B = C?

Task 5 For real numbers x, y, z does x+ y = x+ z imply y = z?
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PERMUTATIONS

Each permutation on X4 = {1, 2, 3, 4} is a 1–1, onto function f . For example, the

permutation 1→ 2, 2→ 4, 3→ 3, 4→ 1 has the function table

x 1 2 3 4
f(x) 2 4 3 1

and can be expressed in cycle form as (124). With “multiplication” being composition

of functions the product (124)(23) is (1324), operating left to right. The cycle form (124)

means 1→ 2→ 4→ 1 with 3 fixed. The product (124)(23) can be written as two-rowed

arrays as: (
1 2 3 4
2 4 3 1

)(
1 2 3 4
1 3 2 4

)
=

(
1 2 3 4
3 4 2 1

)
= (1324)

We list cycles in standard form as follows:

1. Smallest number first

2. Omission of a number m means m→ m is fixed

Task 1 a=(1342)

a2 =

a3 =

a4 =

a=(24675)

a2 =

a3 =

a4 =

a5 =

Task 2 If β =(26), β−1 =

What is the inverse of any transposition (ab)?
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Task 3 Let α=(132)(4675). What is the smallest positive integer s so that

αs = (1)? s= .

Repeat with β=(12)(3465): s= .

Give the order of each element by filling in the chart:

α (13) (132) (12)(34) (1432) (132)(23) (13)(12)

order α

What is the order of β = (13)(257)(4689)?

What is the order of γ = (13)(234)?
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WORKSHEET ON SUBGROUPS

Let H = {α : α = a+ bi, |α| ≤ 1}. Is H a subgroup of the multiplicative group of non-zero
complex numbers?

Task 1 Draw a picture showing all α with |α| ≤ 1.
Recall |a+ bi| =

√
a2 + b2.

Task 2 To show that H is a subgroup we need to show, for one thing, that if α ∈ H
so is α−1. What is the inverse of a+ bi? Try this on α = 1

2
+ 1

2
i. What is α−1?

Is α ∈ H? You need to compute
√

1
4

+ 1
4
.

Draw α and α−1 in your picture as vectors. How are their angles related? How
do you multiply two complex numbers to show αα−1 = 1?

Task 3 Give an α not in H.

Task 4 Do you now need to check closure?
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WORKSHEET ON ORDER

The order of an element a of a group G is the order of the cyclic subgroup [a] generated by
a in G. Equivalently, it is the smallest positive integer m so that am = e.

Task 1 Let G be a cyclic group of order 18 generated by a. Then

G = {e, a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17}.

Give the order of each element of G by filling out the chart:

x e a a2 a3 a4 a5 a6 a7 a8

order x

x a9 a10 a11 a12 a13 a14 a15 a16 a17

order x

Task 2 Repeat Task 1 with G being a cyclic group of order 24.
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WORKSHEET ON GROUP TABLES

Give as many reasons as you can why each of these tables cannot be group operation tables.
You can state a group axiom that fails, or appeal to some of our theorems and results.

a b c d e

a c e a b d

b d c b e a

c a b c d e

d e a d c b

e b d e a c

a b c d e

a c e a b d

b d a b e c

c a b c d e

d e c d a b

e b d e c a

a b c d e

a e d b c a

b c e d a b

c d a e b c

d b c a e d

e a b c d e



17

WORKSHEET ON COMPLEX NUMBERS

Task 1 i2 =

(1 + i)(2− 3i) =

Task 2 Locate each of the following in the cartesian plane.

(a) 1, (−1 + i
√

3)/2, (−1− i
√

3)/2

(b) 1, −1, i, −i

(c) Connect each of the points in (a) and describe the properties of the
figure. Repeat with (b).

(d) What are the roots of x3 − 1 = 0, x4 − 1 = 0, and how is this question
related to the above parts?
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Task 3 If r and s are roots of x2 − 7x+ 43 = 0, what are r + s and rs?

Task 4 Use (x− a)(x− b) = x2 − (a+ b)x+ ab to resolve Task 3.

Give a similar expression for (x− a)(x− b)(x− c).

What is the sum of the roots of x3 − 3x2 + 2x− 14 = 0? The product of the roots?

Let 1, r, s be roots of x3 − 1 = 0.

The product of the roots is 1rs = , so that rs = .

Also, r3 = , s3 = .

Explain why r2 = −r − 1 and r =
1

s
and r3 =

r2

s
.

Why is r2 = s?
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MULTIPLICATION TABLE OF ROOTS

Task 1 Use xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1) to complete the chart:

FACTORS ROOTS

x2 − 1 = 0 (x− 1)(x+ 1) 1,−1

x3 − 1 = 0

x4 − 1 = 0

For convenience, you might want to label the roots of x3 − 1 = 0 as 1, β, γ.

Task 2 Make the multiplication table for each set of roots:

1 −1

1

−1

1 β γ

1

β

γ

Task 3 Plot separately the set of roots for x2 − 1 = 0, x3 − 1 = 0, and x4 − 1 = 0.

Connect the points and describe the geometrical figure produced.

Task 4 Conjecture what happens for x5 − 1 = 0, x6 − 1 = 0.
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GROUP TABLE FOR THE SIXTH ROOTS OF UNITY

The goal here is to find the six roots of x6 − 1 = 0, plot them, and make their group table.

Task 1 Factor x6 − 1 = (x3 − 1)( ) = ( )( )( )( )

The six roots are:

Task 2 Plot these six complex numbers.

Connect them, forming a

Task 3 Label the six roots 1, r, s, −1, −r, −s where 1, r, s are the roots of x3 − 1 = 0.
Show why the last three are negatives of the first three. Show why rs = 1, r2 = s, s2 = r.

Task 4 Make the group table
1 r s −1 −r −s

1

r

s

−1

−r

−s
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MULTIPLICATION TABLE FOR THE ROOTS
OF x8 − 1 = 0

FACTOR: x8 − 1 = (x4 − 1)(x4 + 1). The roots of x4 − 1 = 0 are

x4 + 1 = x4 + 2x2 + 1− 2x2 = (x2 + 1)2 − (
√

2x)2 = (x2 −
√

2x+ 1)(x2 +
√

2x+ 1)

The other roots are:

r =
1√
2

+
i√
2

−r =
−1√

2
− i√

2

s =
−1√

2
+

i√
2

−s =
1√
2
− i√

2

These eight roots are spread evenly
around a unit circle 45◦ apart.

i

1

rs

−1

−r
−i

−s

Task 1 Use the fact that when you multiply complex numbers you add their arguments to
express each of the following in terms of 1, −1, i, −i, r, s, −r, −s.

r2 = ir = s2 =

rs = is =

Task 2 Complete the multiplication table

1 −1 i −i r s −r −s

1

−1

i

−i

r

s

−r

−s
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COMPOSITION OF FUNCTIONS

Let f1(x)=x f4(x)=
1

x

f2(x)=
1

1− x
f5(x)=1− x

f3(x)=
x− 1

x
f6(x)=

x

x− 1

The following “multiplication”
table can be formed using com-
position of functions as the op-
eration

EXAMPLE: f2 ◦ f6 = f5 since f2

(
x

x− 1

)
=

1

1− x
x−1

= 1− x = f5(x)

◦ x
1

1− x
x− 1

x

1

x
1− x x

x− 1

f1 = x x
1

1− x
x− 1

x

1

x
1− x x

x− 1

f2 =
1

1− x
1

1− x
x− 1

x
x

x

x− 1

1

x
1− x

f3 =
x− 1

x

x− 1

x

f4 =
1

x

1

x

f5 = 1− x 1− x

f6 =
x

x− 1

x

x− 1
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COMPOSITION OF FUNCTIONS (CONT)

Rewrite the table using f1, f2, f3, f4, f5, f6

◦ f1 f2 f3 f4 f5 f6

f1

f2

f3

f4

f5

f6

List properties of this table.

Complete the table showing inverses
f f1 f2 f3 f4 f5 f6

f−1

List all the subsets of {f1, f2, f3, f4, f5, f6} that are closed under ◦.
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EULER φ-FUNCTION

φ(n) is the number of positive integers less than n that are relatively prime to n. Here is a
partial table:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

φ(n) 1 1 2 2 4 2 6 4 6 4 10

Task 1 Complete the table. Any conjectures?

Task 2 Conjecture and prove a formula for φ(p), p a prime.

Task 3 Prove a formula for φ(p2).

Task 4 Compute φ(73) by listing the integers.

Task 5 Prove a formula for φ(pn).

Task 6 Prove that φ(11n) is a multiple of 10, for all n.

Task 7 Show that φ(16) · φ(9) = φ(16 · 9)
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Task 8 Find all x such that φ(x) = n where:

(a) n =1 (b) n=2 (c) n=4

Task 9 The notation (a, b) = 1 means that a and b are relatively prime.
Prove that if (a,m) = 1, then (m− a,m) = 1.

Task 10 Prove that φ(n) is even for n ≥ 3.

Task 11 It can be proved that if (m,n) = 1, then φ(mn) = φ(m)φ(n).
Use this to compute φ(72); also compute φ(120).

Task 12 Prove that if n = pe11 p
e2
2 p

e3
3 , then φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)(
1− 1

p3

)
.
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WORKSHEET ON INVERTIBLES

Let Zm = {0̄, 1̄, 2̄, 3̄, . . . , m− 1)} and Vm be the set of invertibles of Zm consisting of those
elements of Zm that have multiplicative inverses. For each Zm make a table of inverses of
those elements that have multiplicative inverses and list Vm. Here the “bar” indicates an
equivalence class. 2̄ indicates the set of all integers in Z whose remainder is 2 upon division
by m. Once understood, the “bar” is omitted.

SAMPLE:

Z3 = {0, 1, 2}
x 0 1 2

x−1 1 2
V3 = {1, 2}

Z4 = {0, 1, 2, 3}
x 0 1 2 3

x−1
V4 = { }

Z5 = {0, 1, 2, 3, 4}
x 0 1 2 3 4

x−1
V5 = { }

Z6 = {0, 1, 2, 3, 4, 5}
x 0 1 2 3 4 5

x−1
V6 = { }

Z7 = {0, 1, 2, 3, 4, 5, 6}
x 0 1 2 3 4 5 6

x−1
V7 = { }

Can you conjecture which elements of Z30 are invertibles?

How many invertibles does Zp have where p is a prime?

How is the Euler φ-function related to these questions?
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PRESERVATION OF OPERATION

In the following chart you are asked to verify whether certain familiar functions satisfy

f(a ◦ b) = f(a)� f(b). The operations ◦ and � can be addition or multiplication or a
mixture.

FUNCTION YES OR NO REASON

f(x) = x3 yes f(xy) = (xy)3 = x3y3 = f(x)f(y)

f(x) = x4

f(x) = ex

f(x) =
3

2
x

f(x) = 2x+ 1

f(x) = lnx

f(x) = |x|

f(x) =
√
x

f(x) = 2x3

f(x) = det x

θ(f) = f ′

(the derivative)
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A SPECIAL ISOMORPHISM

Task 1 Show that the mapping θ : G → G given by θ(g) = g−1 is an isomorphism if G is
abelian.

STEP 1 θ is 1-to-1. To show this we need to show that if θ(g1) = θ(g2) then

. Since θ(g1) = θ(g2) we get

. Now by taking inverses, we obtain

.

STEP 2 Show that θ is onto.

STEP 3 Show that θ preserves the operation

Task 2 Use θ(g) = g−1 to tabulate an isomorphism from S3, the group of symmetries of an
equilateral triangle, to itself.

g

θ(g)

Task 3 Show that the above result is false if G is not abelian.
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MATCHING GROUPS

There are two nonisomorphic groups of order 4, the cyclic group and the Klein 4-group
whose elements x satisfy x2 = e.

For each of the following groups, label A if it is isomorphic to the cyclic group and B if it is
isomorphic to the Klein group.

[ (1234) ]

[−i]

{e, a, a2, a3}

[i]

Rectangle Group

{1,−1, i,−i}

{0, 1, 2, 3} under addition mod 4

{(1), (12), (34), (12)(34)}

A. Cyclic
B. Klein
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WORKSHEET ON AN 8× 8 GROUP TABLE – Z8

Task 1 Fill in the following table where each of the 64 entries is found by addition modulo
8; i.e. add the two numbers, divide by 8, and record the remainder.

⊕ 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

MAKE A TABLE OF INVERSES
DRAW THE LATTICE
OF SUBGROUPS.

0 1 2 3 4 5 6 7

LABEL AND LIST ALL THE
SUBGROUPS.
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WORKSHEET ON AN 8× 8 GROUP TABLE – Z2 × Z4

Task 1 Fill in the following table using bitwise addition mod 2 in the left-most slot and
bitwise addition mod 4 in the right-most slot.

⊕ 00 01 02 03 10 11 12 13

00

01

02

03

10

11

12

13

MAKE A TABLE OF INVERSES
DRAW THE LATTICE
OF SUBGROUPS.

LABEL AND LIST ALL THE
SUBGROUPS.
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WORKSHEET ON AN 8× 8 GROUP TABLE – Z2 × Z2 × Z2

Task 1 Fill in the following table using bitwise addition mod 2.

⊕ 000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

MAKE A TABLE OF INVERSES
DRAW THE LATTICE
OF SUBGROUPS.

LABEL AND LIST ALL THE
SUBGROUPS.
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WORKSHEET ON AN 8× 8 GROUP TABLE –
THE QUATERNIONS

Task 1 Fill in the following table using the operations:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j

i

j

k

⊗ 1 −1 i −i j −j k −k

1

−1

i

−i

j

−j

k

−k

MAKE A TABLE OF INVERSES
DRAW THE LATTICE
OF SUBGROUPS.

LABEL AND LIST ALL THE
SUBGROUPS.
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WORKSHEET ON AN 8 × 8 GROUP TABLE – THE OCTIC
GROUP

Task 1 Fill in the following table using fr = r3f . These eight elements are the eight sym-
metries of a square.

� 1 r r2 r3 f rf r2f r3f

1

r

r2

r3

f

rf

r2f

r3f

MAKE A TABLE OF INVERSES
DRAW THE LATTICE
OF SUBGROUPS.

LABEL AND LIST ALL THE
SUBGROUPS.
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FIVE NONISOMORPHIC GROUPS OF ORDER 8

Listed next are the elements of these five groups along with their names. You are asked to
show why certain pairs are not isomorphic.

CYCLIC {e, a, a2, a3, a4, a5, a6, a7}

QUATERNIONS {1,−1, i,−i, j,−j, k,−k}

OCTIC {(1), ρ, ρ2, ρ3, φ, ρφ, ρ2φ, ρ3φ}

BIT STRINGS
or Z2 × Z2 × Z2

{000, 001, 010, 011, 100, 101, 110, 111}

Z2 × Z4 {00, 01, 02, 03, 10, 11, 12, 13}

Task 1 Give two reasons why the QUATERNIONS are not isomorphic to the OCTIC group.

Task 2 Why is Z2 × Z4 not isomorphic to Z2 × Z2 × Z2?

Task 3 Why is the CYCLIC group not isomorphic to any of the other four?
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WORKSHEET ON GROUP TABLES, ISOMORPHISMS

Complete the following table using ◦ to mean composition of functions. For example.

f2 ◦ f3 = f2(f3(x)) = f2(1− x) =
1

1− x
= f4

The six functions are:

f1(x) = x f2(x) =
1

x
f3(x) = 1− x f4(x) =

1

1− x
f5(x) =

x− 1

x
f6 =

x

x− 1

◦ f1 f2 f3 f4 f5 f6

f1

f2

f3

f4

f5

f6

Display an isomorphism between this group and either S3 or Z6.
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FUNDAMENTAL THEOREM OF FINITE ABELIAN GROUPS

THEOREM: Every finite abelian group can be written as a product of cyclic groups
of prime power order.

EXAMPLES: The Klein 4–Group is Z2 × Z2; the cyclic group of order 4 is Z4. The
abelian group of order 6 is Z6 which is isomorphic to the direct product
Z2 × Z3.

Let G = {1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64} be a group of order 16 under
multiplication mod 65. G is isomorphic to one of:

Z16

Z2 × Z8

Z4 × Z4

Z2 × Z2 × Z4

Z2 × Z2 × Z2 × Z2

BUT WHICH ONE?

LOOK AT ORDERS!

x 1 8 12 14 18 21 27 31 34 38 44 47 51 53 57 64

order x 1 4 4 2 4 4 4 4 4 4 4

Task 1 Why is G not Z16?

Task 2 Why is G not Z2 × Z8?

Task 3 What are the orders of elements in Z2 × Z2 × Z2 × Z2?

Task 4 Which one must G be?
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Task 5 G = {1, 9, 16, 22, 29, 53, 74, 79, 81} is a group of order 9 under multiplication modulo

91. Is G isomorphic to Z9 or Z3 × Z3? Why are these the only two possibilities?

Make the table of orders and inverses.

x 1 9 16 22 29 53 74 79 81

Order x

x 1 9 16 22 29 53 74 79 81

x−1

Task 6 Identify all abelian groups (up to isomorphism) of order 360 by doing the following:

A. Express 360 as a product of prime numbers

B. List the six direct product possibilities
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WHICH DIRECT PRODUCT?

V45 = {1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44} is a mul-
tiplicative group, using mod 45, of order 24. According to the fundamental theorem of finite
abelian groups, V45 is isomorphic to a direct product of cyclic groups, each having prime
power order. The possibilities are:

Z3 × Z8 Z2 × Z3 × Z4 Z2 × Z2 × Z2 × Z3

You do not include Z24, Z6 × Z4 or Z2 × Z12 since the orders are not prime power. Also
notice that the cyclic group Z24 is, in fact, Z3 × Z8 which has (1, 1) as a generator.

One way of determining which of these three is isomorphic to V45 is by computing the orders
of each element in V45 and comparing with orders of elements in the direct products. By
hand, this is not an easy feat.

USING THE TI-92
Clear home screen – F1, 8
Clear input line – CLEAR
Type in

Define f(n) = mod(22n, 45)
to determine the order of 22, eg., and enter.
Go to APPS and 6: Data/matrix editor, current and enter
If necessary clear columns with F6, 5.
Highlight C1 and enter. Generate the sequence 1, 2, . . . , 24 with

C1 = seq(n, n, 1, 24) and enter.
Highlight C2 and generate f(n) with

C2 = seq(f(n), n, 1, 24) and enter.

Column C2 will give 22n reduced modulo 45 for n ranging from 1 to 24. You should find
that 2212 ≡ 1.
Now, if you return to the home screen [2nd, QUIT] and just change the 22 to 2 we can quickly
see, returning to APPS, 6, in column 2 that the order of 2 is 12. Repeat this and complete
the following table of orders.

x 1 2 4 7 8 11 13 14 16 17 19 22

order x 1 12 6 12

x 23 26 28 29 31 32 34 37 38 41 43 44

order x 12 2
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RINGS THAT ARE NOT INTEGRAL DOMAINS

A commutative ring D with unity 1, having no zero-divisors is called an integral domain.

Task 1 Explain why Z10 is not an integral domain.

Task 2 Why is Z12 not?

Task 3 For which m is Zm not an integral domain?

Task 4 Is Z2 × Z2 an integral domain?

Task 5 Let A and B be integral domains. Is A×B an integral domain?

Task 6 Is the set of all 2× 2 matrices with real entries with the usual addition an multipli-
cation of matrices an integral domain?
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WORKSHEET ON POLYNOMIALS IN Zn[x]

Task 1 Tabulate each of (x + 2̄)(x + 5̄) and x(x + 7̄) in Z10 and thus show that they are
equal.

x 0 1 2 3 4 5 6 7 8 9

(x+ 2̄)(x+ 5̄) 8

x(x+ 7̄) 8

Task 2 Show that (x+ 3̄)(x+ 5̄) = x(x+ 8̄) in Z15[x].

Task 3 Show that (x+ 6̄)2 = x2 in Z12[x].

Task 4 Our experience leads us to expect that deg αβ = deg α + deg β

for polynomials α and β.

But ... Show that (2̄x+ 1̄)(3̄x+ 5̄) = x+ 5̄ in Z6[x].
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Task 5 Show that in Z6[x]

(2̄x+ 5̄)(3̄x+ 2̄) = (x+ 4̄)

(3̄x+ 3̄)(4̄x2 + 2̄) = 0̄

Task 6 In Z5[x], (2̄x+ 1̄)(4̄x+ 3̄) = (x+ 3̄)(3̄x+ 1̄)

Make these linear factors monic (leading coefficient is 1̄) by factoring out 2̄, 4̄,

and 3̄. For example (2̄x+ 1̄) = 2̄(x+ 3̄). Then both sides become

.
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WORKSHEET ON ANOTHER RING

Define“addition” and “multiplication” as follows:

a⊕ b = a+ b− 1

a⊗ b = a+ b− ab

show that (Z,⊕,⊗) is a ring by doing the following:

Task 1 Determine the “0”, the additive identity. Is there a unity?

Task 2 What is the additive inverse of a? Why?

Task 3 Is ⊕ associative? Is ⊗ associative?

Task 4 Show that ⊗ is distributive over ⊕.
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SUMMARY OF RINGS AND THEIR PROPERTIES

Ring Form of Element Unity Abelian Integral Domain Field

Z k 1 Yes Yes No

Zn, n composite

Zp, p prime

Z[x]

nZ, n > 1

M(Z), 2×2 matrices

Z[i]

Z3[i]

Z2[i]

Z[
√

2]

Q[
√

2] a+ b
√

2

Z⊕ Z
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Z3[i] IS A FIELD WITH 9 ELEMENTS

This field consists of all elements of the form m + ni where m and n are in {0,1,2}. The
multiplication table is:

1 2 i 1 + i 2 + i 2i 1 + 2i 2 + 2i

1 1 2 i 1 + i 2 + i 2i 1 + 2i 2 + 2i

2 2 1 2i 2 + 2i 1 + 2i i 2 + i 1 + i

i i 2i

1 + i 1 + i 2 + 2i

2 + i 2 + i 1 + 2i

2i 2i i

1 + 2i 1 + 2i 2 + i

2 + 2i 2 + 2i 1 + i

Task 1 Complete the table of inverses and orders:

x 1 2 i 1 + i 2 + i 2i 1 + 2i 2 + 2i

x−1

order of x

Task 2 Which familiar group is the multiplicative group isomorphic to?
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APPLICATION OF A FAMOUS THEOREM

PROBLEM: Explain why x7 − x = x(x− 1)(x− 2)(x− 3)(x− 4)(x− 5)(x− 6) in Z7[x].

There are a number of ways of approaching this problem, several motivated by
a similar question you couild ask in the 8th grade. Explain why x2− 5x+ 6 =
(x− 2)(x− 3). The following tasks guide you through three solutions.

Task 1 Use a calculator and show that each of 1, 2, 3, 4, 5, 6 satisfies x7 − x = 0; then use
the factor theorem.

Task 2 Simplify the right hand side algebraically using x− 6 = x+ 1, x− 5 = x+ 2,
x− 4 = x+ 3.

Task 3 What famous Theorem has x7 − x ≡ 0 or x7 ≡ x in it?


