

## Contents

| Three Tables                     |
|----------------------------------|
| Closure                          |
| Residue Classes                  |
| Modular Arithmetic               |
| Cancellation                     |
| Permutations                     |
| Subgroups                        |
| Order                            |
| Group Tables                     |
| Complex Numbers                  |
| Table of Roots    19             |
| Sixth Roots of Unity             |
| Eighth Roots of Unity 21         |
| Composition of Functions         |
| Euler $\phi$ -Function           |
| Invertibles                      |
| Preservation of Operation        |
| A Special Isomorphism            |
| Matching Groups                  |
| Groups of Order 8                |
| Five Groups of Order 8           |
| Group Tables, Isomorphisms 36    |
| Fundamental Theorem              |
| Which Direct Product             |
| Rings, But Not I.D.              |
| Polynomials in $\mathbb{Z}_n[x]$ |
| Another Ring                     |
| Summary of Rings                 |
| A Field With 9 Elements          |
| Application of a Famous Theorem  |

#### DAY 1 PROPERTIES OF THREE TABLES

 $\bullet$  = usual complex multiplication

| •  | 1 | -1 | i | - <i>i</i> |
|----|---|----|---|------------|
| 1  |   |    |   |            |
| -1 |   |    |   |            |
| i  |   |    |   |            |
| -i |   |    |   |            |

# **PROPERTIES, OBSERVATIONS** 1.

2.

3.

 $\otimes =$  units digit in regular multiplication

| $\otimes$ | 1 | 3 | 7 | 9 | . 1 |
|-----------|---|---|---|---|-----|
| 1         |   |   |   |   | 1.  |
| 1         |   |   |   |   | 2.  |
| 3         |   |   |   |   | 2.  |
| 7         |   |   |   |   | 3.  |
| 7         |   |   |   |   |     |
| 9         |   |   |   |   |     |

 $\oplus$  = bitwise addition, 0 if same, 1 if different

| $\oplus$ | 00 | 01 | 10 | 11 | 1. |
|----------|----|----|----|----|----|
| 00       |    |    |    |    | 1. |
|          |    |    |    |    | 2. |
| 01       |    |    |    |    | 2  |
| 10       |    |    |    |    | 3. |
| 11       |    |    |    |    |    |

#### WORKSHEET ON CLOSURE I

A set  $S = \{a, b, c, ...\}$  is closed under a binary operation  $\circ$  if whenever x and y are elements of S so is  $x \circ y$ .

For each of the following if the answer is yes, give a reason and if no, provide a counterexample.

<u>**Task 1**</u> Is  $E = \{0, 2, 4, 6, 8, ...\}$  closed under the binary operation of addition?

 $\square$  yes,  $\square$  no Reason: Let 2m and 2n be arbitrary elements in E.

Then since ...

How about under multiplication?

<u>**Task 2**</u> Is  $A = \{0, 1, 4, 9, 16, ...\}$  closed under addition?

Under subtraction?

Under multiplication?

<u>**Task 3**</u> Is the set of all rational numbers of the form  $2^m 3^n$ , where  $m, n \in \mathbb{Z}$ , closed under multiplication?

<u>**Task 4**</u> Is the set of all positive rational numbers closed under addition? Multiplication?

<u>**Task 5**</u> Are the complex numbers of the form m + ni where m and n are integers closed under multiplication?

**<u>Task 6</u>** Is the set  $\{m + n\sqrt{2} : m, n \in \mathbb{Z}\}$  closed under multiplication?

Task 7 Are the irrationals closed under multiplication? Under subtraction?

#### WORKSHEET ON CLOSURE II

Let  $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ QUESTION: Which of the sets  $3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}$  are closed under subtraction?

<u>**Task 1**</u> List the elements of  $3\mathbb{Z}$ ; choose two and subtract them.

<u>Task 2</u> What does it mean to say  $3\mathbb{Z}$  is closed under subtraction?

<u>Task 3</u> Is  $3\mathbb{Z}$  closed under subtraction? If yes, prove it.

<u>**Task 4**</u> Is  $1 + 3\mathbb{Z}$  closed under subtraction?

**Task 5** Is  $2 + 3\mathbb{Z}$  closed under subtraction?

<u>**Task 6**</u> Why must a set of integers contain 0 to be closed under subtraction?

### WORKSHEET ON CLOSURE III

PROBLEM: Prove that if S and T are sets of integers closed under subtraction so is the intersection  $S \cap T$ .

<u>**Task 1**</u> Say in your own words what it means to say S is closed under subtraction.

<u>**Task 2**</u> What do you have to show in order to check that  $S \cap T$  is closed under subtraction?

Task 3 Draw a Venn diagram as an aid, and resolve the problem.

<u>**Task 4**</u> If S and T are sets of integers closed under subtraction is the union  $S \cup T$  also closed under subtraction? If yes, prove it, if no give a counterexample.

#### WORKSHEET ON RESIDUE CLASSES

Congruence Modulo m is an EQUIVALENCE RELATION on  $\mathbb{Z}$ , the set of all integers.

R - REFLEXIVE:  $a \equiv a(m)$ S - SYMMETRIC: If  $a \equiv b(m)$  then  $b \equiv a(m)$ T - TRANSITIVE:  $a \equiv b(m)$  and  $b \equiv c(m)$  then  $a \equiv c(m)$ 

The relation *congruence* partitions  $\mathbb{Z}$  into disjoint <u>EQUIVALENCE CLASSES</u> or <u>RESIDUE CLASSES</u>.

When m = 2,  $\mathbb{Z}$  is partitioned into the classes  $2\mathbb{Z}$  and  $1 + 2\mathbb{Z}$ .

 $2\mathbb{Z} = \{\dots, -4, -2, 0, 2, 4, \dots\}$  $1 + 2\mathbb{Z} = \{\dots, -3, -1, 1, 3, 5, 7, \dots\}$ 

<u>**Task 1**</u> Explain why the classes  $2\mathbb{Z}$  and  $1 + 2\mathbb{Z}$  are disjoint.

<u>**Task 2**</u> What the residue classes when m = 3? Are they disjoint? Why?

<u>**Task 3**</u> When m = 4? Explain.

#### WORKSHEET ON MODULAR ARITHMETIC

 $a \equiv b \pmod{m}$  means a and b have the same remainder when divided by m; or that a - b is divisible by m, or a - b = mk. An example:  $17 \equiv 9 \pmod{4}$  since 4 divides 17 - 9.

|       | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|-------|---|---|---|---|---|---|---|---|---|---|----|----|----|
| Mod 2 |   |   |   |   |   |   |   |   |   |   |    |    |    |
| Mod 3 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1  | 2  | 0  |
| Mod 4 |   |   |   |   |   |   |   |   |   |   |    |    |    |
| Mod 5 |   |   |   |   |   |   |   |   |   |   |    |    |    |
| Mod 6 |   |   |   |   |   |   |   |   |   |   |    |    |    |

Task 1 Complete the missing four rows:

Task 2 Tables of addition Mod 5 and Mod 6 would look like:

|          |   |   |   |   |   | $\oplus$ | 0 | 1 | 2 | 3 | 4 | 5 |
|----------|---|---|---|---|---|----------|---|---|---|---|---|---|
| $\oplus$ | 0 | 1 | 2 | 3 | 4 | 0        |   |   |   |   |   |   |
| 0        |   |   |   |   |   | 1        |   |   |   |   |   |   |
| 1        | 1 | 2 | 3 | 4 | 0 | 2        |   |   |   |   |   |   |
| 2        |   |   |   |   |   | 3        |   |   |   |   |   |   |
| 3        |   |   |   |   |   | 4        |   |   |   |   |   |   |
| 4        |   |   |   |   |   |          |   |   |   |   |   |   |
|          |   |   |   |   |   | $5 \mid$ |   |   |   |   |   |   |

Let  $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$  be the six elements you used to make the 6 by 6 table in Task 2. If you examine that addition table, you can see that each of the following subsets are closed under the binary operation  $\oplus$ . The relationship among these subsets is shown in the diagram.

$$A = \{0\}$$

$$B = \{0, 3\}$$

$$C = \{0, 2, 4\}$$

$$D = \{0, 1, 2, 3, 4, 5\}$$

<u>**Task 3**</u> Make the  $\oplus$  table for  $\mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ , list all the subsets closed under  $\oplus$ , and make a diagram as above.

| $\oplus$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |             |
|----------|---|---|---|---|---|---|---|---|-------------|
| 0        |   |   |   |   |   |   |   |   | $A = \{0\}$ |
| 1        |   |   |   |   |   |   |   |   | B =         |
| 2        |   |   |   |   |   |   |   |   | C =         |
| 3        |   |   |   |   |   |   |   |   | D =         |
| 4        |   |   |   |   |   |   |   |   |             |
| 5        |   |   |   |   |   |   |   |   |             |
| 6        |   |   |   |   |   |   |   |   |             |
| 7        |   |   |   |   |   |   |   |   |             |

<u>**Task 4**</u> Without making the addition table, can you give all the closed subsets of  $\mathbb{Z}_{12}$ ?

#### WORKSHEET ON CANCELLATION

Cancellation Theorem: If either ab = ac or ba = ca in a group G, then b = c.

<u>**Task 1**</u> Let's try to prove right cancellation.

The hypothesis for right cancellation is:

If the element a is in G, \_\_\_\_\_\_ is also in G.

Now show how to use this latter element on ba = ca and conclude that b = c.

#### - CONNECTIONS -

<u>**Task 2**</u> Let A, B, C be sets in a universe S. If  $A \cup B = A \cup C$  is it necessarily true that B = C?

**<u>Task 3</u>** Does  $A \cap B = A \cap C$  imply B = C?

**Task 4** For 2 by 2 matrices A, B, C does AB = AC imply B = C?

**<u>Task 5</u>** For real numbers x, y, z does x + y = x + z imply y = z?

## PERMUTATIONS

Each permutation on  $X_4 = \{1, 2, 3, 4\}$  is a 1–1, onto function f. For example, the permutation  $1 \rightarrow 2, 2 \rightarrow 4, 3 \rightarrow 3, 4 \rightarrow 1$  has the function <u>table</u>

and can be expressed in <u>cycle form</u> as (124). With "multiplication" being composition of functions the product (124)(23) is (1324), operating left to right. The cycle form (124) means  $1 \rightarrow 2 \rightarrow 4 \rightarrow 1$  with 3 fixed. The product (124)(23) can be written as two-rowed arrays as:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix} = (1324)$$

We list cycles in standard form as follows:

- 1. Smallest number first
- 2. Omission of a number m means  $m \to m$  is fixed

| <u>Task 1</u> | a = (1342) | a = (24675) |
|---------------|------------|-------------|
|               | $a^2 =$    | $a^2 =$     |
|               | $a^3 =$    | $a^3 =$     |
|               | $a^4 =$    | $a^4 =$     |
|               |            | $a^5 =$     |

<u>Task 2</u> If  $\beta = (26), \beta^{-1} =$ 

What is the inverse of any transposition (*ab*)?\_\_\_\_\_

<u>**Task 3**</u> Let  $\alpha = (132)(4675)$ . What is the smallest positive integer s that

 $\alpha^s = (1)? \ s =$ \_\_\_\_\_.

Repeat with  $\beta = (12)(3465)$ : s =\_\_\_\_\_.

Give the <u>order</u> of each element by filling in the chart:

| α              | (13) | (132) | (12)(34) | (1432) | (132)(23) | (13)(12) |
|----------------|------|-------|----------|--------|-----------|----------|
| order $\alpha$ |      |       |          |        |           |          |

What is the order of  $\beta = (13)(257)(4689)$ ?

What is the order of  $\gamma = (13)(234)$ ?

#### WORKSHEET ON SUBGROUPS

Let  $H = \{\alpha : \alpha = a + bi, |\alpha| \le 1\}$ . Is H a subgroup of the multiplicative group of non-zero complex numbers?

<u>**Task 1**</u> Draw a picture showing all  $\alpha$  with  $|\alpha| \leq 1$ . Recall  $|a + bi| = \sqrt{a^2 + b^2}$ .

**<u>Task 2</u>** To show that *H* is a subgroup we need to show, for one thing, that if  $\alpha \in H$  so is  $\alpha^{-1}$ . What is the inverse of a + bi? Try this on  $\alpha = \frac{1}{2} + \frac{1}{2}i$ . What is  $\alpha^{-1}$ ?

Is  $\alpha \in H$ ? You need to compute  $\sqrt{\frac{1}{4} + \frac{1}{4}}$ .

Draw  $\alpha$  and  $\alpha^{-1}$  in your picture as vectors. How are their angles related? How do you multiply two complex numbers to show  $\alpha \alpha^{-1} = 1$ ?

<u>**Task 3**</u> Give an  $\alpha$  <u>not</u> in *H*.

Task 4 Do you now need to check closure?

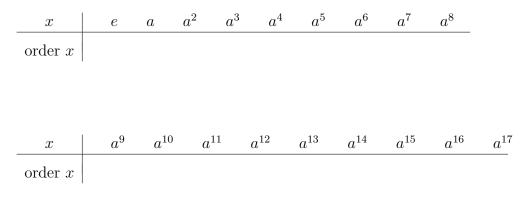
#### WORKSHEET ON ORDER

The order of an element a of a group G is the order of the cyclic subgroup [a] generated by a in G. Equivalently, it is the <u>smallest</u> positive integer m so that  $a^m = e$ .

<u>**Task 1**</u> Let G be a cyclic group of order 18 generated by a. Then

$$G = \{e, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^{10}, a^{11}, a^{12}, a^{13}, a^{14}, a^{15}, a^{16}, a^{17}\}.$$

Give the order of each element of G by filling out the chart:



<u>**Task 2**</u> Repeat Task 1 with G being a cyclic group of order 24.

## WORKSHEET ON GROUP TABLES

Give as many reasons as you can why each of these tables cannot be group operation tables. You can state a group axiom that fails, or appeal to some of our theorems and results.

|   | a | b                                                       | c | d | e |
|---|---|---------------------------------------------------------|---|---|---|
| a | С | e                                                       | a | b | d |
| b | d | c                                                       | b | e | a |
| c | a | b                                                       | c | d | e |
| d | e | a                                                       | d | c | b |
| e | b | e<br>c<br>b<br>a<br>d                                   | e | a | С |
|   |   |                                                         |   |   |   |
|   | a | b                                                       | С | d | e |
| a | С | e                                                       | a | b | d |
| b | d | a                                                       | b | e | С |
| c | a | b                                                       | С | d | e |
| d | e | c                                                       | d | a | b |
| e | b | $egin{array}{c} b \\ e \\ a \\ b \\ c \\ d \end{array}$ | e | С | a |
|   |   |                                                         |   |   |   |
|   | a | b                                                       | С | d | e |
|   | e | d                                                       | b | С | a |
| b | c | e                                                       | d | a | b |
| С | d | a                                                       | e | b | c |
| d | b | c                                                       | a | e | d |
| e | a | e<br>a<br>c<br>b                                        | С | d | e |
|   |   |                                                         |   |   |   |

### WORKSHEET ON COMPLEX NUMBERS

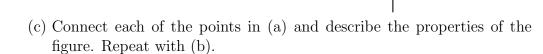
<u>Task 1</u>  $i^2 =$ 

$$(1+i)(2-3i) =$$

(b) 1, -1, i, -i

<u>**Task 2**</u> Locate each of the following in the cartesian plane.

(a) 1, 
$$(-1 + i\sqrt{3})/2$$
,  $(-1 - i\sqrt{3})/2$ 



(d) What are the roots of  $x^3 - 1 = 0$ ,  $x^4 - 1 = 0$ , and how is this question related to the above parts?

**<u>Task 3</u>** If r and s are roots of  $x^2 - 7x + 43 = 0$ , what are r + s and rs?

<u>**Task 4**</u> Use  $(x - a)(x - b) = x^2 - (a + b)x + ab$  to resolve Task 3.

Give a similar expression for (x - a)(x - b)(x - c).

What is the sum of the roots of  $x^3 - 3x^2 + 2x - 14 = 0$ ? The product of the roots?

Let 1, r, s be roots of  $x^3 - 1 = 0$ .

The product of the roots is 1rs =\_\_\_\_\_, so that rs =\_\_\_\_\_.

Also,  $r^3 =$ \_\_\_\_\_,  $s^3 =$ \_\_\_\_\_.

Explain why  $r^2 = -r - 1$  and  $r = \frac{1}{s}$  and  $r^3 = \frac{r^2}{s}$ .

Why is  $r^2 = s$ ?

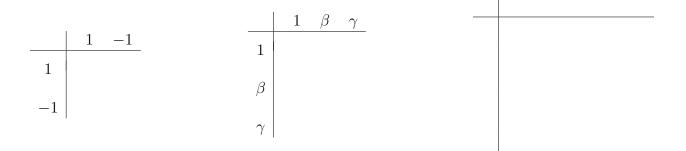
#### MULTIPLICATION TABLE OF ROOTS

<u>**Task 1**</u> Use  $x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$  to complete the chart:

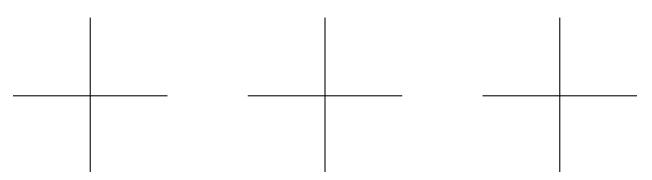
|               | FACTORS    | ROOTS    |
|---------------|------------|----------|
| $x^2 - 1 = 0$ | (x-1)(x+1) | $1,\!-1$ |
| $x^3 - 1 = 0$ |            |          |
| $x^4 - 1 = 0$ |            |          |

For convenience, you might want to label the roots of  $x^3 - 1 = 0$  as 1,  $\beta$ ,  $\gamma$ .

<u>**Task 2**</u> Make the multiplication table for each set of roots:



**<u>Task 3</u>** Plot separately the set of roots for  $x^2 - 1 = 0$ ,  $x^3 - 1 = 0$ , and  $x^4 - 1 = 0$ .



Connect the points and describe the geometrical figure produced.

**<u>Task 4</u>** Conjecture what happens for  $x^5 - 1 = 0$ ,  $x^6 - 1 = 0$ .

#### GROUP TABLE FOR THE SIXTH ROOTS OF UNITY

The goal here is to find the six roots of  $x^6 - 1 = 0$ , plot them, and make their group table.

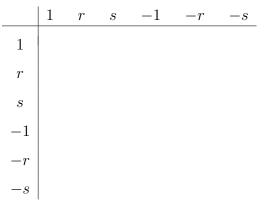
<u>**Task 1**</u> Factor  $x^6 - 1 = (x^3 - 1)($  ) = ( )( )( )( )( )The six roots are:

Task 2 Plot these six complex numbers.



<u>**Task 3**</u> Label the six roots 1, r, s, -1, -r, -s where 1, r, s are the roots of  $x^3 - 1 = 0$ . Show why the last three are negatives of the first three. Show why rs = 1,  $r^2 = s$ ,  $s^2 = r$ .

<u>**Task 4**</u> Make the group table



#### MULTIPLICATION TABLE FOR THE ROOTS **OF** $x^8 - 1 = 0$

FACTOR:  $x^8 - 1 = (x^4 - 1)(x^4 + 1)$ . The roots of  $x^4 - 1 = 0$  are \_\_\_\_\_  $x^4 + 1 = x^4 + 2x^2 + 1 - 2x^2 = (x^2 + 1)^2 - (\sqrt{2}x)^2 = (x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$  $r = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \qquad -r = \frac{-1}{\sqrt{2}} - \frac{i}{\sqrt{2}}$ The other roots are:  $s = \frac{-1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$   $-s = \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}$ These eight roots are spread evenly

around a unit circle  $45^{\circ}$  apart.

 $\underline{\text{Task 1}}$  Use the fact that when you multiply complex numbers you add their arguments to express each of the following in terms of 1, -1, i, -i, r, s, -r, -s.

-i

| $r^2 =$ | ir = | $s^2 =$ |
|---------|------|---------|
| rs =    | is = |         |

Task 2 Complete the multiplication table

|    | 1 | -1 | i | -i | r | s | -r | -s |
|----|---|----|---|----|---|---|----|----|
| 1  |   |    |   |    |   |   |    |    |
| -1 |   |    |   |    |   |   |    |    |
| i  |   |    |   |    |   |   |    |    |
| -i |   |    |   |    |   |   |    |    |
| r  |   |    |   |    |   |   |    |    |
| s  |   |    |   |    |   |   |    |    |
| -r |   |    |   |    |   |   |    |    |
| -s |   |    |   |    |   |   |    |    |

COMPOSITION OF FUNCTIONS

Let 
$$f_1(x) = x$$
  $f_4(x) = \frac{1}{x}$ 

$$f_2(x) = \frac{1}{1-x}$$
  $f_5(x) = 1-x$ 

The following "multiplication" table can be formed using composition of functions as the operation

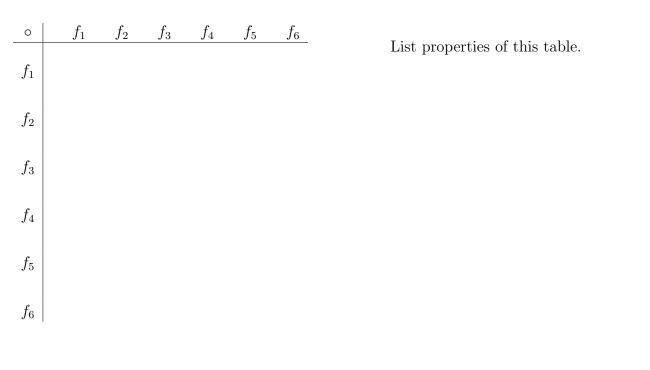
$$f_3(x) = \frac{x-1}{x}$$
  $f_6(x) = \frac{x}{x-1}$ 

EXAMPLE: 
$$f_2 \circ f_6 = f_5$$
 since  $f_2\left(\frac{x}{x-1}\right) = \frac{1}{1-\frac{x}{x-1}} = 1-x = f_5(x)$ 

| 0                     | x               | $\frac{1}{1-x}$ | $\frac{x-1}{x}$ | $\frac{1}{x}$   | 1-x           | $\frac{x}{x-1}$ |
|-----------------------|-----------------|-----------------|-----------------|-----------------|---------------|-----------------|
| $f_1 = x$             | x               | $\frac{1}{1-x}$ | $\frac{x-1}{x}$ | $\frac{1}{x}$   | 1-x           | $\frac{x}{x-1}$ |
|                       |                 | $\frac{x-1}{x}$ | x               | $\frac{x}{x-1}$ | $\frac{1}{x}$ | 1-x             |
| $f_3 = \frac{x-1}{x}$ | $\frac{x-1}{x}$ |                 |                 |                 |               |                 |
| $f_4 = \frac{1}{x}$   | $\frac{1}{x}$   |                 |                 |                 |               |                 |
| $f_5 = 1 - x$         | 1-x             |                 |                 |                 |               |                 |
| $f_6 = \frac{x}{x-1}$ | $\frac{x}{x-1}$ |                 |                 |                 |               |                 |

## COMPOSITION OF FUNCTIONS (CONT)

Rewrite the table using  $f_1, f_2, f_3, f_4, f_5, f_6$ 



Complete the table showing inverses

| f        | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$ |
|----------|-------|-------|-------|-------|-------|-------|
| $f^{-1}$ |       |       |       |       |       |       |

List all the subsets of  $\{f_1, f_2, f_3, f_4, f_5, f_6\}$  that are closed under  $\circ.$ 

#### EULER $\phi$ -FUNCTION

 $\phi(n)$  is the number of positive integers less than n that are relatively prime to n. Here is a partial table:

| n         | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|-----------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| $\phi(n)$ | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 4 | 6 | 4  | 10 |    |    |    |    |    |

Task 1 Complete the table. Any conjectures?

**<u>Task 2</u>** Conjecture and prove a formula for  $\phi(p)$ , p a prime.

<u>**Task 3**</u> Prove a formula for  $\phi(p^2)$ .

<u>**Task 4**</u> Compute  $\phi(7^3)$  by listing the integers.

<u>**Task 5**</u> Prove a formula for  $\phi(p^n)$ .

**<u>Task 6</u>** Prove that  $\phi(11^n)$  is a multiple of 10, for all n.

**<u>Task 7</u>** Show that  $\phi(16) \cdot \phi(9) = \phi(16 \cdot 9)$ 

**<u>Task 8</u>** Find all x such that  $\phi(x) = n$  where:

(a) 
$$n = 1$$
 (b)  $n = 2$  (c)  $n = 4$ 

<u>**Task 9**</u> The notation (a, b) = 1 means that a and b are relatively prime. Prove that if (a, m) = 1, then (m - a, m) = 1.

**<u>Task 10</u>** Prove that  $\phi(n)$  is even for  $n \ge 3$ .

<u>**Task 11**</u> It can be proved that if (m, n) = 1, then  $\phi(mn) = \phi(m)\phi(n)$ . Use this to compute  $\phi(72)$ ; also compute  $\phi(120)$ .

**Task 12** Prove that if 
$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3}$$
, then  $\phi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \left(1 - \frac{1}{p_3}\right)$ .

#### WORKSHEET ON INVERTIBLES

Let  $\mathbb{Z}_m = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \dots, \overline{m-1}\}$  and  $V_m$  be the set of invertibles of  $\mathbb{Z}_m$  consisting of those elements of  $\mathbb{Z}_m$  that have *multiplicative* inverses. For each  $\mathbb{Z}_m$  make a table of inverses of those elements that have multiplicative inverses and list  $V_m$ . Here the "bar" indicates an equivalence class.  $\overline{2}$  indicates the set of all integers in  $\mathbb{Z}$  whose remainder is 2 upon division by m. Once understood, the "bar" is omitted.

SAMPLE:  

$$\mathbb{Z}_3 = \{0, 1, 2\}$$

$$\frac{x \quad 0 \quad 1 \quad 2}{x^{-1} \quad 1 \quad 2}$$
 $V_3 = \{1, 2\}$ 

$$\mathbb{Z}_4 = \{0, 1, 2, 3\} \qquad \frac{x \mid 0 \quad 1 \quad 2 \quad 3}{x^{-1} \mid} \qquad V_4 = \{ \qquad \}$$

$$\mathbb{Z}_5 = \{0, 1, 2, 3, 4\} \qquad \frac{x \quad 0 \quad 1 \quad 2 \quad 3 \quad 4}{x^{-1}} \qquad V_5 = \{ \qquad \}$$

$$\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\} \qquad \frac{x \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5}{x^{-1} \mid} \qquad V_6 = \{ \qquad \}$$

$$\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\} \qquad \frac{x \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6}{x^{-1}} \qquad V_7 = \{ \qquad \}$$

Can you conjecture which elements of  $\mathbb{Z}_{30}$  are invertibles?

How many invertibles does  $\mathbb{Z}_p$  have where p is a prime?

How is the Euler  $\phi$ -function related to these questions?

### PRESERVATION OF OPERATION

In the following chart you are asked to verify whether certain familiar functions satisfy

 $f(a \circ b) = f(a) \Box f(b).$  The operations  $\circ$  and  $\Box$  can be addition or multiplication or a mixture.

| FUNCTION              | YES OR NO | REASON                               |
|-----------------------|-----------|--------------------------------------|
| $f(x) = x^3$          | yes       | $f(xy) = (xy)^3 = x^3y^3 = f(x)f(y)$ |
| $f(x) = x^4$          |           |                                      |
| $f(x) = e^x$          |           |                                      |
| $f(x) = \frac{3}{2}x$ |           |                                      |
| f(x) = 2x + 1         |           |                                      |
| $f(x) = \ln x$        |           |                                      |
| f(x) =  x             |           |                                      |
| $f(x) = \sqrt{x}$     |           |                                      |
| $f(x) = 2x^3$         |           |                                      |
| $f(x) = \det x$       |           |                                      |
| $\theta(f) = f'$      |           |                                      |

(the derivative)

#### A SPECIAL ISOMORPHISM

<u>**Task 1**</u> Show that the mapping  $\theta: G \to G$  given by  $\theta(g) = g^{-1}$  is an isomorphism if G is abelian.

STEP 1  $\theta$  is 1-to-1. To show this we need to show that if  $\theta(g_1) = \theta(g_2)$  then

. Since  $\theta(g_1) = \theta(g_2)$  we get

. Now by taking inverses, we obtain

STEP 2 Show that  $\theta$  is onto.

STEP 3 Show that  $\theta$  preserves the operation

<u>**Task 2**</u> Use  $\theta(g) = g^{-1}$  to tabulate an isomorphism from  $S_3$ , the group of symmetries of an equilateral triangle, to itself.

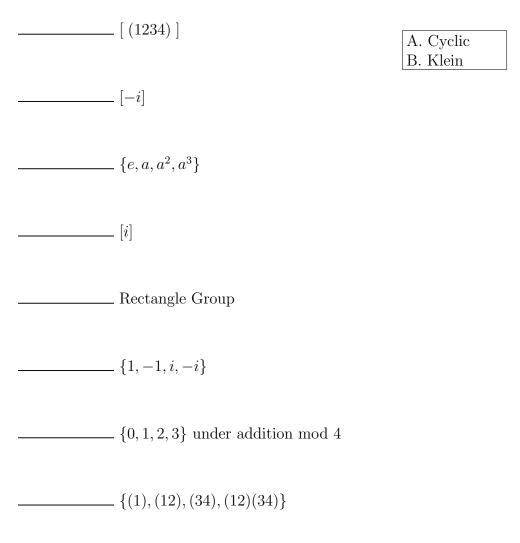
| g           |  |
|-------------|--|
| $\theta(g)$ |  |

<u>Task 3</u> Show that the above result is false if G is <u>not</u> abelian.

### MATCHING GROUPS

There are two nonisomorphic groups of order 4, the cyclic group and the Klein 4-group whose elements x satisfy  $x^2 = e$ .

For each of the following groups, label A if it is isomorphic to the cyclic group and B if it is isomorphic to the Klein group.



### WORKSHEET ON AN $8 \times 8$ GROUP TABLE $-\mathbb{Z}_8$

**Task 1** Fill in the following table where each of the 64 entries is found by addition modulo 8; i.e. add the two numbers, divide by 8, and record the remainder.

| $\oplus$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|----------|---|---|---|---|---|---|---|---|
| 0        |   |   |   |   |   |   |   |   |
| 1        |   |   |   |   |   |   |   |   |
| 2        |   |   |   |   |   |   |   |   |
| 3        |   |   |   |   |   |   |   |   |
| 4        |   |   |   |   |   |   |   |   |
| 5        |   |   |   |   |   |   |   |   |
| 6        |   |   |   |   |   |   |   |   |
| 7        |   |   |   |   |   |   |   |   |

#### MAKE A TABLE OF INVERSES

DRAW THE LATTICE OF SUBGROUPS.

0 1 2 3 4 5 6 7

## WORKSHEET ON AN $8 \times 8$ GROUP TABLE – $\mathbb{Z}_2 \times \mathbb{Z}_4$

<u>**Task 1**</u> Fill in the following table using bitwise addition mod 2 in the left-most slot and bitwise addition mod 4 in the right-most slot.

| $\oplus$ | 00 | 01 | 02 | 03 | 10 | 11 | 12 | 13 |
|----------|----|----|----|----|----|----|----|----|
| 00       |    |    |    |    |    |    |    |    |
| 01       |    |    |    |    |    |    |    |    |
| 02       |    |    |    |    |    |    |    |    |
| 03       |    |    |    |    |    |    |    |    |
| 10       |    |    |    |    |    |    |    |    |
| 11       |    |    |    |    |    |    |    |    |
| 12       |    |    |    |    |    |    |    |    |
| 13       |    |    |    |    |    |    |    |    |

\_\_\_\_\_

#### MAKE A TABLE OF INVERSES

DRAW THE LATTICE OF SUBGROUPS.



SUBGROUPS.

## **WORKSHEET ON AN** $8 \times 8$ **GROUP TABLE** $-\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

| <u><b>Task 1</b></u> Fill in the following table using <u>bitwise addition mod 2</u> | Task 1 | Fill in | the follo | wing table | e using | bitwise | addition | mod 2 | 2. |
|--------------------------------------------------------------------------------------|--------|---------|-----------|------------|---------|---------|----------|-------|----|
|--------------------------------------------------------------------------------------|--------|---------|-----------|------------|---------|---------|----------|-------|----|

| $\oplus$ | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|
| 000      |     |     |     |     |     |     |     |     |
| 001      |     |     |     |     |     |     |     |     |
| 010      |     |     |     |     |     |     |     |     |
| 011      |     |     |     |     |     |     |     |     |
| 100      |     |     |     |     |     |     |     |     |
| 101      |     |     |     |     |     |     |     |     |
| 110      |     |     |     |     |     |     |     |     |
| 111      |     |     |     |     |     |     |     |     |

#### MAKE A TABLE OF INVERSES

## DRAW THE LATTICE OF SUBGROUPS.



# WORKSHEET ON AN $8\times 8$ GROUP TABLE – THE QUATERNIONS

<u>**Task 1**</u> Fill in the following table using the operations:

|           |   | $i^2 = .$ | $j^2 = k^2$ | $^{2} = -1$ | , ij = - | -ji = k | x, jk = | -kj = | <i>i</i> , <i>ki</i> = | = - <i>ik</i> = | = j |
|-----------|---|-----------|-------------|-------------|----------|---------|---------|-------|------------------------|-----------------|-----|
|           |   |           |             |             |          | k       |         |       |                        |                 |     |
| $\otimes$ | 1 | -1        | i           | -i          | j        | -j      | k       | -k    |                        |                 |     |
| 1         |   |           |             |             |          |         |         |       |                        |                 |     |
| -1        |   |           |             |             |          |         |         |       |                        |                 |     |
| i         |   |           |             |             |          |         |         |       |                        |                 |     |
| -i        |   |           |             |             |          |         |         |       |                        |                 |     |
| j         |   |           |             |             |          |         |         |       |                        |                 |     |
| -j        |   |           |             |             |          |         |         |       |                        |                 |     |
| k         |   |           |             |             |          |         |         |       |                        |                 |     |
| -k        |   |           |             |             |          |         |         |       |                        |                 |     |

#### MAKE A TABLE OF INVERSES

## DRAW THE LATTICE OF SUBGROUPS.



# WORKSHEET ON AN $8\times 8$ GROUP TABLE – THE OCTIC GROUP

<u>**Task 1**</u> Fill in the following table using  $fr = r^3 f$ . These eight elements are the eight symmetries of a square.

|         | 1 | r | $r^2$ | $r^3$ | f | rf | $r^2f$ | $r^3f$ |
|---------|---|---|-------|-------|---|----|--------|--------|
| 1       |   |   |       |       |   |    |        |        |
| r       |   |   |       |       |   |    |        |        |
| $r^2$   |   |   |       |       |   |    |        |        |
| $r^3$   |   |   |       |       |   |    |        |        |
| f       |   |   |       |       |   |    |        |        |
| rf      |   |   |       |       |   |    |        |        |
| $r^2 f$ |   |   |       |       |   |    |        |        |
| $r^3f$  |   |   |       |       |   |    |        |        |

#### MAKE A TABLE OF INVERSES

DRAW THE LATTICE OF SUBGROUPS.



#### FIVE NONISOMORPHIC GROUPS OF ORDER 8

Listed next are the elements of these five groups along with their names. You are asked to show why certain pairs are <u>not</u> isomorphic.

CYCLIC  $\{e, a, a^2, a^3, a^4, a^5, a^6, a^7\}$ QUATERNIONS  $\{1, -1, i, -i, j, -j, k, -k\}$ OCTIC  $\{(1), \rho, \rho^2, \rho^3, \phi, \rho\phi, \rho^2\phi, \rho^3\phi\}$ BIT STRINGS or  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$   $\{000, 001, 010, 011, 100, 101, 110, 111\}$  $\mathbb{Z}_2 \times \mathbb{Z}_4$   $\{00, 01, 02, 03, 10, 11, 12, 13\}$ 

<u>**Task 1**</u> Give two reasons why the QUATERNIONS are <u>not</u> isomorphic to the OCTIC group.

<u>**Task 2**</u> Why is  $\mathbb{Z}_2 \times \mathbb{Z}_4$  not isomorphic to  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ ?

Task 3 Why is the CYCLIC group not isomorphic to any of the other four?

## WORKSHEET ON GROUP TABLES, ISOMORPHISMS

Complete the following table using  $\circ$  to mean composition of functions. For example.

$$f_2 \circ f_3 = f_2(f_3(x)) = f_2(1-x) = \frac{1}{1-x} = f_4$$

The six functions are:

$$f_1(x) = x$$
  $f_2(x) = \frac{1}{x}$   $f_3(x) = 1 - x$   $f_4(x) = \frac{1}{1 - x}$   $f_5(x) = \frac{x - 1}{x}$   $f_6 = \frac{x}{x - 1}$ 

$$\begin{array}{c|c|c|c|c|c|c|c|c|c|} \circ & f_1 & f_2 & f_3 & f_4 & f_5 & f_6 \\ \hline f_1 & & & & & \\ f_2 & & & & & \\ f_3 & & & & & \\ f_4 & & & & & \\ f_5 & & & & & \\ f_6 & & & & & & \\ \end{array}$$

Display an isomorphism between this group and either  $S_3$  or  $\mathbb{Z}_6$ .

#### FUNDAMENTAL THEOREM OF FINITE ABELIAN GROUPS

- <u>THEOREM</u>: Every finite abelian group can be written as a product of cyclic groups of prime power order.
- <u>EXAMPLES</u>: The Klein 4–Group is  $\mathbb{Z}_2 \times \mathbb{Z}_2$ ; the cyclic group of order 4 is  $\mathbb{Z}_4$ . The abelian group of order 6 is  $\mathbb{Z}_6$  which is isomorphic to the direct product  $\mathbb{Z}_2 \times \mathbb{Z}_3$ .

Let  $G = \{1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64\}$  be a group of order 16 under multiplication mod 65. G is isomorphic to one of:

| $\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb$ | $_{2} \times$ | $\mathbb{Z}_4$ | $\mathbb{Z}_2$ | LOOK AT ORDERS! |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|----------------|-----------------|----|----|----|----|----|----|----|----|----|----|----|----|
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1             | 8              | 12             | 14              | 18 | 21 | 27 | 31 | 34 | 38 | 44 | 47 | 51 | 53 | 57 | 64 |
| order $x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1             | 4              | 4              | 2               |    | 4  | 4  |    |    | 4  | 4  | 4  |    | 4  | 4  |    |

<u>**Task 1**</u> Why is G not  $\mathbb{Z}_{16}$ ?

<u>**Task 2**</u> Why is G not  $\mathbb{Z}_2 \times \mathbb{Z}_8$ ?

<u>**Task 3**</u> What are the orders of elements in  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ ?

**Task 4** Which one must G be?

<u>**Task 5**</u>  $G = \{1, 9, 16, 22, 29, 53, 74, 79, 81\}$  is a group of order 9 under multiplication modulo 91. Is G isomorphic to  $\mathbb{Z}_9$  or  $\mathbb{Z}_3 \times \mathbb{Z}_3$ ? Why are these the only two possibilities? Make the table of orders and inverses.

| <i>x</i>  | 1 | 9 | 16 | 22 | 29 | 53 | 74 | 79 | 81 |
|-----------|---|---|----|----|----|----|----|----|----|
| Order $x$ |   |   |    |    |    |    |    |    |    |
|           |   |   |    |    |    |    |    |    |    |
|           |   |   |    |    |    |    |    |    |    |
|           |   |   |    |    |    |    |    |    |    |
| x         | 1 | 9 | 16 | 22 | 29 | 53 | 74 | 79 | 81 |
| $x^{-1}$  |   |   |    |    |    |    |    |    |    |

Task 6 Identify all abelian groups (up to isomorphism) of order 360 by doing the following:

A. Express 360 as a product of prime numbers

B. List the six direct product possibilities

#### 39

#### WHICH DIRECT PRODUCT?

 $V_{45} = \{1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44\}$  is a multiplicative group, using mod 45, of order 24. According to the fundamental theorem of finite abelian groups,  $V_{45}$  is isomorphic to a direct product of cyclic groups, each having prime power order. The possibilities are:

 $\mathbb{Z}_3 \times \mathbb{Z}_8 \qquad \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \qquad \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$ 

You do not include  $\mathbb{Z}_{24}$ ,  $\mathbb{Z}_6 \times \mathbb{Z}_4$  or  $\mathbb{Z}_2 \times \mathbb{Z}_{12}$  since the orders are not prime power. Also notice that the cyclic group  $\mathbb{Z}_{24}$  is, in fact,  $\mathbb{Z}_3 \times \mathbb{Z}_8$  which has (1, 1) as a generator.

One way of determining which of these three is isomorphic to  $V_{45}$  is by computing the orders of each element in  $V_{45}$  and comparing with orders of elements in the direct products. By hand, this is not an easy feat.

USING THE TI-92 Clear home screen – F1, 8 Clear input line – CLEAR Type in  $Define \ f(n) = mod(22^n, 45)$ to determine the order of 22, eg., and enter. Go to APPS and 6: Data/matrix editor, current and enter If necessary clear columns with F6, 5. Highlight C1 and enter. Generate the sequence 1, 2, ..., 24 with C1 = seq(n, n, 1, 24) and enter. Highlight C2 and generate f(n) with

C2 = seq(f(n), n, 1, 24) and enter.

Column C2 will give  $22^n$  reduced modulo 45 for *n* ranging from 1 to 24. You should find that  $22^{12} \equiv 1$ .

Now, if you return to the home screen [2<sup>nd</sup>, QUIT] and just change the 22 to 2 we can quickly see, returning to APPS, 6, in column 2 that the order of 2 is 12. Repeat this and complete the following table of orders.

| <i>x</i>  | 1  | 2  | 4  | 7  | 8  | 11 | 13 | 14 | 16 | 17 | 19 | 22 | _  |
|-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|
| order $x$ | 1  | 12 | 6  | 12 |    |    |    |    |    |    |    |    |    |
|           |    |    |    |    |    |    |    |    |    |    |    |    |    |
| x         | 23 | 26 | 28 | 29 | 31 | -  | 32 | 34 | 37 | 38 | 41 | 43 | 44 |
| order $x$ |    |    |    |    |    |    |    |    |    |    |    | 12 | 2  |

### RINGS THAT ARE NOT INTEGRAL DOMAINS

A commutative ring D with unity 1, having no zero-divisors is called an integral domain.

<u>**Task 1**</u> Explain why  $\mathbb{Z}_{10}$  is not an integral domain.

**<u>Task 2</u>** Why is  $\mathbb{Z}_{12}$  not?

**<u>Task 3</u>** For which m is  $\mathbb{Z}_m$  not an integral domain?

<u>**Task 4**</u> Is  $\mathbb{Z}_2 \times \mathbb{Z}_2$  an integral domain?

<u>**Task 5**</u> Let A and B be integral domains. Is  $A \times B$  an integral domain?

<u>**Task 6**</u> Is the set of all  $2 \times 2$  matrices with real entries with the usual addition an multiplication of matrices an integral domain?

### WORKSHEET ON POLYNOMIALS IN $\mathbb{Z}_n[x]$

<u>**Task 1**</u> Tabulate each of  $(x + \overline{2})(x + \overline{5})$  and  $x(x + \overline{7})$  in  $\mathbb{Z}_{10}$  and thus show that they are equal.

| <i>x</i>                 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|--------------------------|---|---|---|---|---|---|---|---|---|---|
| $(x+\bar{2})(x+\bar{5})$ |   |   | 8 |   |   |   |   |   |   |   |
| $x(x+\overline{7})$      |   |   | 8 |   |   |   |   |   |   |   |

<u>**Task 2</u>** Show that  $(x + \overline{3})(x + \overline{5}) = x(x + \overline{8})$  in  $\mathbb{Z}_{15}[x]$ .</u>

**<u>Task 3</u>** Show that  $(x + \overline{6})^2 = x^2$  in  $\mathbb{Z}_{12}[x]$ .

<u>**Task 4**</u> Our experience leads us to expect that deg  $\alpha\beta = \text{deg }\alpha + \text{deg }\beta$ for polynomials  $\alpha$  and  $\beta$ . But ... Show that  $(\bar{2}x + \bar{1})(\bar{3}x + \bar{5}) = x + \bar{5}$  in  $\mathbb{Z}_6[x]$ .

<u>**Task 5**</u> Show that in  $\mathbb{Z}_6[x]$ 

$$(\bar{2}x+\bar{5})(\bar{3}x+\bar{2}) = (x+\bar{4})$$

$$(\bar{3}x + \bar{3})(\bar{4}x^2 + \bar{2}) = \bar{0}$$

<u>**Task 6</u>** In  $\mathbb{Z}_5[x], (\bar{2}x+\bar{1})(\bar{4}x+\bar{3}) = (x+\bar{3})(\bar{3}x+\bar{1})$ </u>

Make these linear factors monic (leading coefficient is  $\overline{1}$ ) by factoring out  $\overline{2}, \overline{4}$ , and  $\overline{3}$ . For example  $(\overline{2}x + \overline{1}) = \overline{2}(x + \overline{3})$ . Then both sides become

#### WORKSHEET ON ANOTHER RING

Define "addition" and "multiplication" as follows:

 $a \oplus b = a + b - 1$  $a \otimes b = a + b - ab$ 

show that  $(\mathbb{Z}, \oplus, \otimes)$  is a ring by doing the following:

<u>**Task 1**</u> Determine the "0", the additive identity. Is there a unity?

<u>**Task 2**</u> What is the additive inverse of a? Why?

**<u>Task 3</u>** Is  $\oplus$  associative? Is  $\otimes$  associative?

<u>**Task 4**</u> Show that  $\otimes$  is distributive over  $\oplus$ .

| Ring                                 | Form of Element | Unity | Abelian | Integral Domain | Field |
|--------------------------------------|-----------------|-------|---------|-----------------|-------|
| $\mathbb{Z}$                         | k               | 1     | Yes     | Yes             | No    |
| $\mathbb{Z}_n, n \text{ composite}$  |                 |       |         |                 |       |
| $\mathbb{Z}_p, p$ prime              |                 |       |         |                 |       |
| $\mathbb{Z}[x]$                      |                 |       |         |                 |       |
| $n\mathbb{Z}, \ n > 1$               |                 |       |         |                 |       |
| $M(\mathbb{Z}), 2 \times 2$ matrices |                 |       |         |                 |       |
| $\mathbb{Z}[i]$                      |                 |       |         |                 |       |
| $\mathbb{Z}_3[i]$                    |                 |       |         |                 |       |
| $\mathbb{Z}_2[i]$                    |                 |       |         |                 |       |
| $\mathbb{Z}[\sqrt{2}]$               |                 |       |         |                 |       |
| $\mathbb{Q}[\sqrt{2}]$               | $a + b\sqrt{2}$ |       |         |                 |       |
| $\mathbb{Z}\oplus\mathbb{Z}$         |                 |       |         |                 |       |

## SUMMARY OF RINGS AND THEIR PROPERTIES

## $\mathbb{Z}_3[i]$ IS A FIELD WITH 9 ELEMENTS

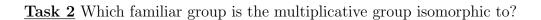
This field consists of all elements of the form m + ni where m and n are in  $\{0,1,2\}$ . The multiplication table is:

|        | 1              | 2      | i  | 1+i    | 2+i    | 2i | 1 + 2i | 2 + 2i |
|--------|----------------|--------|----|--------|--------|----|--------|--------|
| 1      |                |        |    |        |        |    | 1 + 2i |        |
| 2      |                |        | 2i | 2 + 2i | 1 + 2i | i  | 2+i    | 1+i    |
| i      | i              | 2i     |    |        |        |    |        |        |
| 1+i    | 1+i $2+i$ $2i$ | 2 + 2i |    |        |        |    |        |        |
| 2+i    | 2+i            | 1+2i   |    |        |        |    |        |        |
| 2i     | 2i             | i      |    |        |        |    |        |        |
| 1 + 2i | 1 + 2i         | 2+i    |    |        |        |    |        |        |
| 2 + 2i | 2+2i           | 1+i    |    |        |        |    |        |        |

<u>Task 1</u> Complete the table of inverses and orders:

| x        | 1 | 2 | i | 1+i | 2+i | 2i | 1 + 2i | 2+2i |
|----------|---|---|---|-----|-----|----|--------|------|
| $x^{-1}$ |   |   |   |     |     |    |        |      |
|          |   |   |   |     |     |    |        |      |

order of x



#### APPLICATION OF A FAMOUS THEOREM

<u>PROBLEM</u>: Explain why  $x^7 - x = x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)$  in  $\mathbb{Z}_7[x]$ .

There are a number of ways of approaching this problem, several motivated by a similar question you couild ask in the 8<sup>th</sup> grade. Explain why  $x^2 - 5x + 6 = (x-2)(x-3)$ . The following tasks guide you through three solutions.

<u>**Task 1**</u> Use a calculator and show that each of 1, 2, 3, 4, 5, 6 satisfies  $x^7 - x = 0$ ; then use the factor theorem.

**<u>Task 2</u>** Simplify the right hand side algebraically using x - 6 = x + 1, x - 5 = x + 2, x - 4 = x + 3.

**Task 3** What famous Theorem has  $x^7 - x \equiv 0$  or  $x^7 \equiv x$  in it?