Skip to main content

Worksheet 8.2.2 Activity: Review of the Euclidean Algorithm

The goal of this activity is to remember how to use the Eulcidean Algorithm to find the greatest common divisor of two elements in a ring (numbers or polynomials, for us) and write the gcd as a linear combination of the two elements (which Bezout's lemma tells us we can do).

Example 8.8.

Let's find the gcd of \(945\) and \(2415\text{.}\) Repeatedly use the division algorithm:

\begin{align*} 2415 & = 945 \cdot 2 + 525\\ 945 & = 525 \cdot 1 + 420\\ 525 & = 420 \cdot 1 + 105\\ 420 & = 105 \cdot 4 + 0\text{.} \end{align*}

Check: \(105\) divides all the quotients and remainders, and any other divisor of \(945\) and \(2415\) would also divide \(105\text{.}\) Therefore, \(\gcd( 945, 2415 ) = 105\text{.}\)

Now work backwards to obtain numbers \(r\) and \(s\) such that \(945 r + 2415 s = 105\text{.}\)

\begin{align*} 105 & = 525 + (-1) \cdot 420\\ & = 525 + (-1) \cdot [945 + (-1) \cdot 525]\\ & = 2 \cdot 525 + (-1) \cdot 945\\ & = 2 \cdot [2415 + (-2) \cdot 945] + (-1) \cdot 945\\ & = 2 \cdot 2415 + (-5) \cdot 945\text{.} \end{align*}

So \(r = -5\) and \(s= 2\text{.}\)

1.

Find the greatest common divisor of 471 and 564 using the Euclidean Algorithm and then find integers \(r\) and \(s\) such that \(\gcd(471,564) = 471r+564s\text{.}\)

2.

In the quotient ring \(\Z/\langle 564 \rangle\text{,}\) find an element \(a + \langle 564\rangle\) such that \((a+\langle 564\rangle)(471 + \langle 564\rangle) = 3 + \langle 564 \rangle\text{.}\) Explain why the previous question is helpful here.

3.

Is \(471 + \langle 564\rangle\) a unit in \(\Z/\langle 564\rangle\text{?}\) Explain.


4.

In \(\Q[x]\text{,}\) find the gcd of the polynomials \(a(x) = x^3 + 1\) and \(b(x) = x^4 + x^3 + 2x^2 + x - 1\text{.}\) Then express the gcd as a combination of the two polynomials (as in Bezout's lemma).

5.

Find the greatest common divisor of \(x^{24}-1\) and \(x^{15}-1\) in \(\Q[x]\text{,}\) and then express the gcd as a combination of the two polynomials.

6.

Find a coset \(a(x) + \langle x^{24}-1\rangle\) of \(\Q[x]/\langle x^{24}-1\rangle\) such that \((a(x) + \langle x^{24}-1\rangle)(x^{15}-1 + \langle x^{24}-1\rangle) = x^3-1 + \langle x^{24}-1\rangle\text{.}\)