| Symbol |
Description |
Location |
| \(K_n\) |
the complete graph on \(n\) vertices |
Paragraph |
| \(K_n\) |
the complete graph on \(n\) vertices. |
Item |
| \(K_{m,n}\) |
the complete bipartite graph of of \(m\) and \(n\) vertices. |
Item |
| \(C_n\) |
the cycle on \(n\) vertices |
Item |
| \(P_n\) |
the path on \(n+1\) vertices |
Item |
| \(\chi(G)\) |
the chromatic number of \(G\) |
Paragraph |
| \(\chi'(G)\) |
the chromatic index of \(G\) |
Paragraph |
| \(N(S)\) |
the set of neighbors of \(S\text{.}\) |
Paragraph |
| \(P, Q, R, S, \ldots\) |
propositional (sentential) variables |
Paragraph |
| \(\wedge\) |
logical “and” (conjunction) |
Item |
| \(\vee\) |
logical “or” (disjunction) |
Item |
| \(\neg\) |
logical negation |
Item |
| \(\exists\) |
existential quantifier |
Assemblage |
| \(\forall\) |
universal quantifier |
Assemblage |
| \(\emptyset\) |
the empty set |
Item |
| \(\U\) |
universal set (domain of discourse) |
Item |
| \(\N\) |
the set of natural numbers |
Item |
| \(\Z\) |
the set of integers |
Item |
| \(\Q\) |
the set of rational numbers |
Item |
| \(\R\) |
the set of real numbers |
Item |
| \(\pow(A)\) |
the power set of \(A\) |
Item |
| \(\{, \}\) |
braces, to contain set elements. |
Item |
| \(\st\) |
“such that” |
Item |
| \(\in\) |
“is an element of” |
Item |
| \(\subseteq\) |
“is a subset of” |
Item |
| \(\subset\) |
“is a proper subset of” |
Item |
| \(\cap\) |
set intersection |
Item |
| \(\cup\) |
set union |
Item |
| \(\times\) |
Cartesian product |
Item |
| \(\setminus\) |
set difference |
Item |
| \(\bar{A}\) |
the complement of \(A\) |
Item |
| \(\card{A}\) |
cardinality (size) of \(A\) |
Item |
| \(A\times B\) |
the Cartesian product of \(A\) and \(B\) |
Paragraph |
| \(f(A)\) |
the image of \(A\) under \(f\text{.}\) |
Paragraph |
| \(f\inv(B)\) |
the inverse image of \(B\) under \(f\text{.}\) |
Paragraph |
| \(P(n)\) |
the \(n\)th case we are trying to prove by induction |
Paragraph |
| \(42\) |
the ultimate answer to life, etc. |
Paragraph |